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Forewords for CP4

Bill Poucher

Introduction

In 1970, the Texas A&M UPE Honor Society hosted the first university competitive pro-
gramming competition in the history of the ICPC. The first Finals was held in 1977 in
Atlanta in conjunction with the Winter Meeting of the ACM Computer Science Conference.
The ICPC International Collegiate Programming Contest hosted regional competitions at
643 sites in 104 countries for 59 000 team members and their 5043 coaches from over 3400
universities that span the globe. The top 135 teams of three will advance to the ICPC World
Finals in Moscow hosted by MIPT scheduled for June 2021.

ICPC alumni number over 400,000 worldwide, many playing key roles in building the
global digital community for many decades. The ICPC is the root of competitive program-
ming that reaches out through the global digital community to persons from all cultures and
in increasingly-younger generations.

The UVa Online Judge opened the doors for online competition and access to ICPC prob-
lems under the direction of Professor Miguel Ángel Revilla. Three of the star-studded team
are Steven Halim, Felix Halim, and Suhendry E↵endy, authors of Competitive Programming
4, Book 1 and Book 2. Their work will be honored at the ICPC World Finals in Moscow
hosted by MIPT with a special award from the ICPC Foundation.

Competitive Programming

What is competitive programming and why should you get involved? First and foremost, it’s
a mind sport. It more fully develops your algorithmic reasoning skills and bridges the gap
between theory and application in bite-sized chunks. Full participation develops problem-
solving intuition and competence. Get ready for the Digital Renaissance that will shape
your world in the coming decades. To understand the landscape, it is important to shape
your mind beyond a swarm of buzzwords. Do it as a team sport.

How do we get started?

Start with Competitive Programming 4, Book 1 and Book 2. Start with Book 1 first :). The
authors are seasoned competitive programming experts who have dedicated decades of work
to help at all levels of the sport.

In parallel, engage in a culture that develops habits excellence. You are the first genera-
tion that has never been disconnected. Being connected is best when we bind our strengths
together in common cause. Do that and prepare to meet the challenges that will define your
generation.

Life needs you. We are born to compete. We compete best when we compete together, in
good faith, in goodwill, and with good deeds. When you come to college, consider the ICPC
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and the new program ICPC University Commons that will provide a spectrum of activities
that happen outside of the classroom. You can visit https://icpc.global for details.

Why get started?

Is developing your problem-solving skills important? Yes. Is preparing for a future engaged
in the global digital community important? Yes. Is following T.S. Elliot’s advice that to
fully develop you must go too far? Yes. Do that in competitive programming. Be careful of
pursuits that are not reversible.

Is competitive programming practical? Aristotle asserted that there is nothing more
practical than engaging in mental activities and reflections which have their goal in them-
selves and take pace for their own sake. Let me recommend that you engage your spirit in
building a more beautiful world. In the immense scope of life, abundant small kindnesses
make a di↵erence. Find friends with common interest and embrace this cycle:

Repeat for a lifetime: Study; Practice; Rehearse; Dress Rehearse; Perform.

It works for athletes.
It works for musicians.
It works for all performance arts.
It will work for you.

Best, Bill
Dr. William B. “Bill” Poucher, Ph.D., ACM Fellow
Professor of Computer Science, Baylor University
Executive Director, ICPC International Collegiate Programming Contest
President, ICPC Foundation
July 13th, 2020.
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Miguel Revilla Rodŕıguez

Almost 20 years ago (on November 11th, 2003, to be precise), my father (Miguel Ángel
Revilla) received an e-mail with the following message:

“I should say in a simple word that with the UVa Site, you have given birth to
a new CIVILIZATION and with the books you write (he meant “Programming
Challenges: The Programming Contest Training Manual” [53], coauthored with
Steven Skiena), you inspire the soldiers to carry on marching. May you live long
to serve the humanity by producing super-human programmers.”

What, in my father’s words, was “clearly an exaggeration”, caused some thinking. And it’s
not a secret that thoughts can easily lead to dreams. His dream was to create a community
around the project he had started, as part of is teaching job at the University of Valladolid,
Spain, that gathered people from all around the world working together towards the same
ideal, the same quest. With a little searching, on the primitive Internet of the first years of
our century, a whole online community of excellent users and tools, built around the UVa
site, came to light.

The website Methods to Solve1, created by a very young student from Indonesia, was one
of the most impressive among them. There was the result of the hard work of a real genius
of algorithms and computer science. The seed was planted to believe that the dream could
come true. Moreover, it was not only that the leaves of that growing tree were a perfect
match, but the root of both projects were exactly the same: to serve the humanity. That
young student, the author of the e-mail and the website that put my father to dream, was
Steven Halim. Later he would discover that Steven was not alone in his quest, as his younger
brother, Felix, shared his view, his interests, and his extraordinary capabilities.

After 15 years of fruitful collaboration and, more important, friendship with Steven and
Felix, my father sadly passed away in 2018. His work, and his dreams, now belong to us,
the next generation. This book is the living proof that the dream has become true.

“I can’t imagine a better complement for the UVa Online Judge”, are my father’s words.
Now, with this fourth version of Competitive Programming in my hands, I can add that I
can’t imagine the very existence of the Online Judge without this book. Both projects have
grown in parallel and are, no doubt, perfect complements and companions to each other.
By practicing and mastering most programming exercises in this book, the reader can learn
how to solve hundreds of tasks and find a place in the top 500 best Online Judge coders.
You have in your hands over 2000 (yes, two thousand!) selected, classified, and carefully
commented problems from the Online Judge.

The authors, in the past two decades, have grown from contestants, to coaches and,
finally, masters in the art of competitive programming. They perfectly know every curve
and crossroad in that long path, and they can put themselves in the skins of the young
IOI contestant, the ICPC newcomer or the seasoned coach, speaking to each in their own
language. This book is, for that very reason, the perfect reading for all of them. No matter
if you are starting as a competitive programmer in your local IOI, or are coaching in the
next ICPC World Finals, no doubt this IS the book for you.

1Please visit https://cpbook.net/methodstosolve
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I love movies, I adore classic movies, and I know that what I’m watching is a masterpiece,
when, after the film ends, I can’t wait to start all over again. In Steven and Felix own words
“the book is not meant to be read once, but several times”. And you will find that same
feeling, not only because the authors recommend it, but because you will be anxious to read
and re-read it as, like in the greatest movies, you will find something new and amazing each
time. This book is, by that logic, a masterpiece.

I also have the great honor of being the Spanish language translator of this book. Trans-
lating requires a very meticulous process of converting the words while keeping the spirit.
You have to think as the author would think, and have to perfectly understand not only
what the author is saying, but also what the author is meaning. It is a handcrafting exer-
cise. Having gone forth and back through this text hundreds of times, I have enjoyed every
concept, every new idea, and every tip, not only by what is written in it, but also by what
it wants to achieve. The quest of making better programmers and, behind that, the quest
of serving humanity. This book is, indeed, a truly masterpiece.

Once you’ve read this book several times, you will realize how much a better programmer
you are but, believe it or not, you will realize that you are also a happier person.

Miguel Revilla Rodŕıguez (Miguel Jr)
Online Judge Manager
https://onlinejudge.org
July 1st, 2020, Valladolid.
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Fredrik Niemelä

I got my first physical copy of this book from Steven at IOI 2012 in Italy. Like so many other
computer scientists, he has a great sense of humor, and named it “Competitive Programming:
Increasing the Lower Bound of Programming Contests.” It was the second edition of the
book and already twice the size of the first edition. Packed with practical advice, it was well-
suited to get beginners started and had useful material for the more seasoned algorithmist.

Steven and Felix’s vision for their book was to teach everybody how to program (As
Gusteau from Ratatouille would put it: “Tout le monde peut programmer”). I had a similar
vision, but instead of writing a book, we created Kattis. “Competitive Programming” and
Kattis share this motivating principle: to make learning computer science and programming
accessible for everyone. In that sense, they are like two of many pieces in the same puzzle.

Kattis is an online tool for teaching computer science and programming, which relies on
a curated library of programming tasks. I managed to convince Steven that he should try
using Kattis for some of his teaching activities. Over the years he has moved from using
Kattis, to pushing us to improve Kattis, to adding high-quality content to Kattis.

From years of teaching algorithms and using similar systems that preceded Kattis, we
learned that the quality of the problems, and their absolute correctness, are paramount for
learning outcomes. So, this is where we put extra e↵ort into Kattis. (If you ever felt that
it’s too much work to add problems to Kattis, this is why). What we did back then is now
standard practice—both the ICPC and IOI use the same kinds of methods for their finals.

In this fourth edition (more than twice as large as the second edition!), Steven and Felix,
now joined by co-author Suhendry, are using problems from Kattis. We are honored to be
included. Finally, our puzzle pieces are directly connected, and I am very excited about
that.

I hope you will find this book informative and helpful and that you will spend the time
it asks of you. You will not be disappointed.

Fredrik Niemelä
Founder of Kattis
ICPC Contest System Director
IOI Technical Committee Founding Member
https://www.kattis.com
July 11th, 2020.
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Brian Christopher Dean

I’ve had the privilege to be part of the competitive programming world for more than three
decades, during which time I’ve seen the field grow substantially in terms of its impact
on modern computing. As director of the USA Computing Olympiad and coach of my
University’s ICPC teams, I have seen firsthand how competitive programming has become a
key part of the global computing talent pipeline - both academia and industry are now filled
with present-day superstars who were formerly superstars in competitive programming.

Just as the world of competitive programming has shown tremendous growth in scope,
depth, and relevance, so too has this text, now in its fourth edition. Earlier editions of
this book provided what I consider to be the gold standard for both an introduction and a
thorough reference to the algorithmic concepts most prevalent in competitive programming.
The same remains true for this edition.

Competitive programming can be a daunting undertaking for the novice student - learn-
ing to code is plenty challenging by itself, and on top of this we add a layer of ”standard”
algorithms and data structures and then another layer of problem-solving insight and tricks.
This text helps the introductory student navigate these challenges in several ways, by its
thoughtful organization, extensive practice exercises, and by articulating ideas both in clear
prose and code. Competitive programming can also be a daunting prospect for the advanced
student due to its rapid pace of evolution - techniques can go from cutting-edge to common-
place in a matter of just a few years, and one must demonstrate not only proficiency but
true mastery of a formidable and ever-expanding body of algorithmic knowledge. With its
comprehensive algorithmic coverage and its extensive listing of ⇡ 3458 categorized problems,
this text provides the advanced student with years of structured practice that will lead to a
high baseline skill level.

I think this is a book that belongs in the library of anyone serious about computing, not
just those training for their first or their hundredth programming competition. Ideas from
competitive programming can help one develop valuable skills and insight - both in theory
and implementation - that can be brought to bear on a wide range of modern computing
problems of great importance in practice. Algorithmic problem solving is, after all, truly
the heart and soul of computer science! These types of problems are often used in job
interviews for a good reason, since they indicate the type of prospective employee who has
a skill set that is broadly applicable and that can adapt gracefully to changes in underlying
technologies and standards. Studying the concepts in this text is an excellent way to sharpen
your skills at problem solving and coding, irrespective of whether you intend to use them in
competition or in your other computational pursuits.

I’ve thoroughly enjoyed reading successive drafts
of this updated work shared with me by the au-
thors at recent IOIs, and I commend the authors on
the impressive degree to which they have been able
extend the scope, clarity, and depth of an already-
remarkable text.

Brian Christopher Dean
Professor and Chair
Division of Computer Science, School of Computing
Clemson University, Clemson, SC, USA
Director, USA Computing Olympiad
July 5th, 2020
http://www.usaco.org/
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Testimonials of CP1/2/3

“Competitive Programming 3 has contributed immensely to my understanding of data
structures & algorithms. Steven & Felix have created an incredible book that thoroughly
covers every aspect of competitive programming, and have included plenty of practice
problems to make sure each topic sinks in. Practicing with CP3 has helped me nail job

interviews at Google, and I can’t thank Steven & Felix enough!”
— Troy Purvis, Software Engineer @ Google.

“Steven and Felix are passionate about competitive programming. Just as importantly,
they are passionate about helping students become better programmers. CP3 is the result:
a dauntless dive into the data structures, algorithms, tips, and secrets used by competitive

programmers around the world. Yet, when the dust settles on the book, the strongest
sillage is likely to be one of confidence—that, yes, this stu↵ is challenging, but that you can

do it.” — Dr. Daniel Zingaro, Associate Professor Teaching Stream,
University of Toronto Mississauga.

“CP-Book helped us to train many generations of ICPC and IOI participants for Bolivia.
It’s the best source to start and reach a good level to be a competitive programmer.” —

Jhonatan Castro, ICPC coach and Bolivia IOI Team coach,
Universidad Mayor de San Andrés, La Paz, Bolivia.

“Reading CP3 has been a major contributor to my growth, not just as a competitive
programmer, but also as a computer scientist. My entire approach to problem solving has

been improved by doing the exercises in the book; my passion for the art of problem
solving, especially in contest environments, has been intensified. I now mentor several

students using this book as a guide. It is an invaluable resource to anyone who wants to be
a better problem solver.” — Ryan Austin Fernandez, Assistant Professor,

De La Salle University, Manila, Philippines.

“I rediscovered CP3 book on 2017-2019 when I come back to Peru after my master in
Brazil, I enjoyed, learned and solved many problems, more than during my undergraduate,

coaching and learning together in small group of new students that are interesting in
competitive programming. It kept me in a constantly competition with them, at the end

they have solved more problems than me.” — Luciano Arnaldo Romero Calla,
PhD Student, University of Zurich.

“CP1 helped my preparation during national team training and selection for participating
the IOI. When I took the competitive programming course in NUS, CP2 book is

extensively used for practice and homework. The good balance between the programming
and theoretic exercises for deeper understanding in the book makes CP book a great book

to be used for course references, as well as for individual learning. Even at the top
competitive programming level, experts can still learn topics they have not learnt before

thanks to the rare miscellaneous topics at the end of the book.”
— Jonathan Irvin Gunawan, Software Engineer, Google.
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TESTIMONIALS Various Book Readers

“Dr. Steven Halim is one of the best professors I have had in NUS. His intuitive
visualizations and clear explanations of highly complex algorithms make it significantly
easier for us to grasp di�cult concepts. Even though I was never fully into Competitive
Programming, his book and his teaching were vital in helping me in job interviews and
making me a better coder. Highly recommend CP4 to anyone looking to impress in

software engineering job interviews.” — Patrick Cho, Machine Learning Scientist, Tesla.

“Flunked really hard at IOI 2017, missing medal cuto↵ by 1 place. Then at the beginning
of 2018 Steven Halim gave me a draft copy of CP3.1 / CP4 and I ended up getting a gold

medal!” — Joey Yu, Student, University of Waterloo, SWE Intern at Rippling,
IOI 2018 Gold Medalist.

“As a novice self-learner, CP-book helped me to learn the topics in both fun and
challenging ways. As an avid and experienced CP-er, CP-book helped me to find a
plentiful and diverse problems. As a trainer, CP-book helped me to plan ahead the

materials and tactical strategies or tricks in competition for the students. As the person
ever in those three di↵erent levels, I must e↵ortlessly say CP-book is a must-have to being
a CP master!” — Ammar Fathin Sabili, PhD Student, National University of Singapore.

“I’ve been in CP for three years. A rookie number for all the competitive programmers out
there. I have a friend (still chatting with him today) who introduced me to this book. He’s
my roommate on our National Training Camp for IOI 2018’s selection. I finally get a grab
of this book in early 2019. To be honest I’m not the ‘Adhoc’ and good at ‘Math’ type of
CP-er. I love data structures, graph (especially trees) And this CP3 book. Is a leap of

knowledge. No joke. I met Dr Felix when I was training in BINUS, I also met Dr Steven
when I competed in Singapore’s NOI and one of my unforgettable moment is, this legend
book got signed by its two authors. Even tho the book is full of marks and stains, truly

one of my favorite. Kudos for taking me to this point of my life.”
— Hocky Yudhiono, Student, University of Indonesia.

“I bought CP3 on 7th April 2014 on my birthday as a gift for myself and it has been the
most worth-it 30USD spent by me on any educational material. In the later years, I was

able to compete in IOI and ICPC WF. I think CP3 played a very big factor in igniting the
interest and providing a strong technical foundation about all the essential topics required

in CP.” — Sidhant Bansal, Student, National University of Singapore.

“I have always wanted to get involved in competitive programming, but I didn’t know how
and where to get started. I was introduced to this book while taking Steven’s companion
course (CS3233) in NUS as an exchange student, and I found the book to be really helpful
in helping me to learn competitive programming. It comes with a set of Kattis exercises as
well. This book provides a structured content for competitive programming, and can be
really useful to anyone ranging from beginners to experts. Just like CLRS for algorithms,

CP is THE book for competitive programming.” — Jay Ching Lim,
Student, University of Waterloo.

“My memories about CP3 is me reading it in many places, the bus, my room, the library,
the contest floor...not much time had passed since I start in competitive programming

reading CP3 until I got qualified to an ICPC World Final.”
— Javier Eduardo Ojeda Jorge, ICPC World Finalist, Universidad Mayor de San Simón,

Software Engineer at dParadig, Chile
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Preface for CP4

This Competitive Programming book, 4th edition (CP4) is a must have for every compet-
itive programmer. Mastering the contents of this book is a necessary (but admittedly not
su�cient) condition if one wishes to take a leap forward from being just another ordinary
coder to being among one of the world’s finest competitive programmers.

Typical readers of Book 1 (only) of CP4 would include:

1. Secondary or High School Students who are competing in the annual International
Olympiad in Informatics (IOI) [31] (including the National or Provincial Olympiads)
as Book 1 covers most of the current IOI Syllabus [16],

2. Casual University students who are using this book as supplementary material for
typical Data Structures and Algorithms courses,

3. Anyone who wants to prepare for typical fundamental data structure/algorithm part
of a job interview at top IT companies.

Typical readers of both Book 1 + Book 2 of CP4 would include:

1. University students who are competing in the annual International Collegiate Program-
ming Contest (ICPC) [57] Regional Contests (including the World Finals) as Book 2
covers much more Computer Science topics that have appeared in the ICPCs,

2. Teachers or Coaches who are looking for comprehensive training materials [21],

3. Anyone who loves solving problems through computer programs. There are numerous
programming contests for those who are no longer eligible for ICPC, including Google
CodeJam, Facebook Hacker Cup, TopCoder Open, CodeForces contest, Internet Prob-
lem Solving Contest (IPSC), etc.

Prerequisites

This book is not written for novice programmers so that we can write much more about
Competitive Programming instead of repeating the basic programming methodology con-
cepts that are widely available in other Computer Science textbooks. This book is aimed
at readers who have at least basic knowledge in programming methodology, are familiar
with at least one of these programming languages (C/C++, Java, Python, or OCaml) but
preferably more than one programming language, have passed (or currently taking) a basic
data structures and algorithms course and a discrete mathematics course (both are typically
taught in year one of Computer Science university curricula or in the NOI/IOI training
camps), and understand simple algorithmic analysis (at least the big-O notation). In the
next subsections, we will address the di↵erent potential readers of this book.
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To (Aspiring) IOI Contestants

IOI is not a speed contest and for now, currently excludes the topics listed in the following
Table 1 (many are in Book 2). You can skip these topics until your University years (when
you join that university’s ICPC teams). However, learning these techniques in advance
is definitely beneficial as some tasks in IOI can become easier with additional knowledge.
Therefore, we recommend that you grab a copy of this book early in your competitive
programming journey (i.e., during your high school days).

We are aware that one cannot win a medal in IOI just by mastering the contents of the
current version (CP4) of this book. While we believe that many parts of the latest IOI
syllabus [16] has been included in this book (especially Book 1)—hopefully enabling you to
achieve a respectable score in future IOIs—we are well aware that modern IOI tasks require
keen problem solving skills and tremendous creativity [20]—virtues that we cannot possibly
impart through a static textbook. This book can provide knowledge, but the hard work must
ultimately be done by you. With practice comes experience, and with experience comes skill.
So, keep on practicing!

Topics in Book 2
Math: Big Integer, Modular Inverse, Probability Theory, Game Theory
String Processing: Su�x Trees/Arrays, KMP, String Hashing/Rabin-Karp
(Computational) Geometry: Various Geometry-specific library routines
Graph: Network Flow, Harder Matching problems, Rare NP-hard/complete Problems
More than half of the Rare Topics

Table 1: Not in IOI Syllabus [16] Yet

To Students of Data Structures and Algorithms Courses

The contents of this book have been expanded in CP4 so that the first four chapters of this
book are more accessible to first year Computer Science students. Topics and exercises that
we have found to be relatively di�cult and thus unnecessarily discouraging for first timers
have been moved to Book 2. This way, students who are new to Computer Science will
perhaps not feel overly intimidated when they peruse Book 1.

Chapter 1 has a collection of very easy programming contest problems that can be solved
by typical Computer Science students who have just passed (or currently taking) a basic
programming methodology course.

Chapter 2 has received another major update. Now the writeups in the Sections about
Linear and Non-linear Data Structures have been expanded with lots of written exercises so
that this book can also be used to support a Data Structures course, especially in the terms
of implementation details.

The four problem solving paradigms discussed in Chapter 3 appear frequently in typical
Algorithms courses. The text in this chapter has been expanded and edited to help new
Computer Science students.

Parts of Chapter 4 can also be used as a supplementary reading or implementation
guide to enhance a Discrete Mathematics [50, 11] or a basic/intermediate (Graph) Algo-
rithms course. We have also provide some (relatively) new insights on viewing Dynamic
Programming techniques as algorithms on DAGs. Such discussion is currently still regret-
tably uncommon in many Computer Science textbooks.

xvi



PREFACE c� Steven, Felix, Suhendry

To Job Seekers Preparing for IT Job Interview

It is well known that many job interviews in top IT companies involve fundamental data
structure/algorithm/implementation questions. Many such questions have been discussed
especially in Book 1 of CP4. We wish you the best in passing those interview(s).

On the other side of the job interview process, some interviewers read this book too in
order to get inspiration for their interview questions.

To ICPC Contestants

You are the primary readers of this CP4. Both Book 1 and Book 2 are for you.
We know that one cannot probably win an ICPC Regional Contest just by mastering

the contents of the current version of this book (CP4). While we have included a lot of
materials in this book—much more than in the first three editions (CP1 ✓ CP2, then CP2
✓ CP3, and finally CP3 ✓ CP4)—we are aware that much more than what this book can
o↵er is required to achieve that feat. Some additional pointers to useful references are listed
in the chapter notes for readers who are hungry for more. We believe, however, that your
team will fare much better in future ICPCs after mastering the contents of this book. We
hope that this book will serve as both inspiration and motivation for your 3-4 year journey
competing in ICPCs during your University days.

To Teachers and Coaches

Wk Topic In CP4
01 Introduction Chapter 1
02 Data Structures & Libraries Chapter 2+9
03 Complete Search Chapter 3+8+9
04 Dynamic Programming Chapter 3+8+9
05 Bu↵er slot Chapter 3/4/9/others
06 Mid-Semester Team Contest Entire Book 1
- Mid-Semester Break -
07 Graph 1 (Network Flow) Chapter 8+9
08 Graph 2 (Matching) Chapter 8+9
09 NP-hard/complete Problems Chapter 8
10 Mathematics Chapter 5+9
11 String Processing (esp Su�x Array) Chapter 6
12 (Computational) Geometry (Libraries) Chapter 7+9
13 Final Team Contest Entire Book 1+2 and beyond
- No Final Examination -

Table 2: Lesson Plan of Steven’s CS3233 (ICPC Regionals Level)

This book is mainly used in Steven’s CS3233 - “Competitive Programming” course in the
School of Computing at the National University of Singapore. CS3233 is conducted in 13
teaching weeks using the lesson plan mentioned in Table 2 (we abbreviate “Week” as “Wk”
in Table 2). Fellow teachers/coaches should feel free to modify the lesson plan to suit your
students’ needs. Hints or brief solutions of the non-starred written exercises in this book
are given at the back of each chapter. Some of the starred written exercises are quite
challenging and have neither hints nor solutions. These can probably be used as exam
questions or for your local contest problems (of course, you have to solve them first!).
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To All Readers

Due to its diversity of coverage and depth of discussion, this book is not meant to be
read once, but several times. There are many written (⇡ 258) and programming exercises
(⇡ 3458) listed and spread across almost every section. You can skip these exercises at
first if the solution is too di�cult or requires further knowledge and technique, and revisit
them after studying other chapters of this book. Solving these exercises will strengthen
your understanding of the concepts taught in this book as they usually involve interesting
applications, twists or variants of the topic being discussed. Make an e↵ort to attempt
them—time spent solving these problems will definitely not be wasted.

We believe that this book is and will be relevant to many high school students, University
students, and even for those who have graduated from University but still love problem solv-
ing using computers. Programming competitions such as the IOI and ICPC are here to stay,
at least for many years ahead. New students should aim to understand and internalize the
basic knowledge presented in this book before hunting for further challenges. However, the
term ‘basic’ might be slightly misleading—please check the table of contents to understand
what we mean by ‘basic’.

As the title of this book may imply, the purpose of this book is clear: we aim to improve
the reader’s programming and problem solving abilities and thus increase the lower bound
of programming competitions like the IOI and ICPC in the future. With more contestants
mastering the contents of this book, we believe that the year 2010 (CP1 publication year) was
a watershed marking an accelerated improvement in the standards of programming contests.
We hope to help more contestants to achieve greater scores (� 70 – at least ⇡ 6⇥ 10 points
for solving all subtask 1 of the 6 tasks of the IOI) in future IOIs and help more teams
solve more problems (� 2 – at least 1 more than the typical 1 giveaway problem per ICPC
problemset) in future ICPCs. We also hope to see many IOI/ICPC coaches around the world
adopt this book for the aid it provides in mastering topics that students cannot do without
in competitive programming contests. If such a proliferation of the required ‘lower-bound’
knowledge for competitive programming is continued in this 2020s decade, then this book’s
primary objective of advancing the level of human knowledge will have been fulfilled, and
we, as the authors of this book, will be very happy indeed.

Convention

There are lots of C/C++, Java, Python, and occasionally OCaml code included in this book.
If they appear, they will be typeset in this monospace font. All code have 2 spaces per
indentation level except Python code (4 spaces per indentation level).

For the C/C++ code in this book, we have adopted the frequent use of typedefs and
macros—features that are commonly used by competitive programmers for convenience,
brevity, and coding speed. However, we may not always be able to use those techniques in
Java, Python, and/or OCaml as they may not contain similar or analogous features. Here
are some examples of our C/C++ code shortcuts:

typedef long long ll; // common data types
typedef pair<int, int> ii; // comments that are mixed
typedef vector<int> vi; // in with code are placed
typedef vector<ii> vii; // on the right side
memset(memo, -1, sizeof memo); // to init DP memo table
vi memo(n, -1); // alternative way
memset(arr, 0, sizeof arr); // to clear array of ints

xviii



PREFACE c� Steven, Felix, Suhendry

The following shortcuts are frequently used in both our C/C++ and Java code (not all of
them are applicable in Python or OCaml):

// Shortcuts for "common" constants
const int INF = 1e9; // 10^9 = 1B is < 2^31-1
const int LLINF = 4e18; // 4*10^18 is < 2^63-1
const double EPS = 1e-9; // a very small number
++i; // to simplify: i = i+1;
ans = a ? b : c; // ternary operator
ans += val; // from ans = ans+val;
index = (index+1) % n; // to right or back to 0
index = (index+n-1) % n; // to left or back to n-1
int ans = (int)((double)d + 0.5); // for rounding
ans = min(ans, new_computation); // min/max shortcut
// some code use short circuit && (AND) and || (OR)
// some code use structured bindings of C++17 for dealing with pairs/tuples
// we don’t use braces for 1 liner selection/repetition body
// we use pass by reference (&) as far as possible

Problem Categorization

As of 19 July 2020, Steven, Felix, Suhendry—combined—have solved 2278 UVa problems
(⇡ 45.88% of the entire UVa problemset as of publication date). Steven has also solved
5742.7 Kattis points (⇡ 1.4K other problems and ⇡ 55.46% of the entire Kattis problemset
as of publication date). There are ⇡ 3458 problems have been categorized in this book.

These problems are categorized according to a “load balancing” scheme: if a problem can
be classified into two or more categories, it will be placed in the category with a lower number
of problems. This way, you may find that some problems have been ‘wrongly’ categorized,
where the category that it appears in might not match the technique that you have used to
solve it. We can only guarantee that if you see problem X in category Y, then you know
that we have managed to solve problem X with the technique mentioned in the section that
discusses category Y.

We have also limit each category to at most 35 (THIRTY-FIVE) problems, splitting
them into separate categories when needed. In reality, each category has ⇡ 17 problems on
average. Thus, we have ⇡ 3458/17 ⇡ 200+ categories scattered throughout the book.

Utilize this categorization feature for your training! Solving at least a few problems from
each category is a great way to diversify your problem solving skillset. For conciseness, we
have limited ourselves to a maximum of 4 UVa + 3 Kattis (or 3 UVa + 4 Kattis) = 7 starred
* (must try) problems per category and put the rest as extras (the hints for those extras
can be read online at ‘Methods to Solve’ page of https://cpbook.net). You can say that
you have ‘somewhat mastered’ CP4 if you have solved at least three (3) problems per
category (this will take some time).

If you need hints for any of the problems (that we have solved), flip to the handy index
at the back of this book instead of flipping through each chapter—it might save you some
time. The index contains a list of UVa/Kattis problems, ordered by problem number/id (do
a binary search!) and augmented by the pages that contain discussion of said problems (and
the data structures and/or algorithms required to solve that problem). In CP4, we allow
the hints to span more than one line (but not more than two lines) so that they can be a bit
more meaningful. Of course you can always challenge yourself by not reading the hints first.
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Changes for CP4

Competitive Programming textbook has been around since 2010 (first edition, dubbed as
CP1), 2011 (second edition/CP2), and especially 2013 (third edition/CP3). There has been
7 years gap2 between the release of CP3 to the release of this CP4 (just before the landmark
IOI 2020 (Online) + IOI 2021 in Singapore). We highlight the important changes of these 7
years worth of additional Competitive Programming knowledge:

• Obviously, we have fixed all known typos, grammatical errors, and bugs that were
found and reported by CP3 readers since 2013. It does not mean that this edition is
100% free from any bug though. We strive to have only very few errors in CP4.

• We have updated many sample code into C++17, Java 11, Python 3, and even some
OCaml. Many of the sample code become simpler with a few more years of program-
ming language update (e.g., C++17 structured binding declaration), the upgraded cod-
ing skills/styles of the authors, and various interesting contributions from our readers
over these past few years.

• We use a public GitHub repo: https://github.com/stevenhalim/cpbook-code that
contains the same sample code content as this book during the release date of this
edition (19 July 2020). Obviously, the content of the GitHub repo will always be more
up-to-date/complete than the printed version as time goes on. Please star, watch, fork,
or even contribute to this public GitHub repo. You are free to use these source code
for your next programming contest or any other purposes.

• We have added Kattis online judge https://open.kattis.com on top of UVa online
judge and have raised the number of discussed problems to ⇡ 3458. This is more
than two times the number in CP3 (1675). Note that there are ⇡ 150+ overlapping
problems in both UVa and Kattis online judges. We only list them once (under Kattis
problem id). Steven is top 9 (out of ⇡ 141 132 users) in Kattis online judge and top 39
(out of ⇡ 365 857) in UVa online judge as of 19 July 2020, i.e., at the 99.9th percentile
for both online judges.

• We have digitized all hints of the ⇡ 3458 problems that we have solved at https:
//cpbook.net/methodstosolve, including the extras that are not fully shown in the
printed version of this book to save space. The online version has search/filter feature
and will always be more up-to-date than the printed version as time goes on. The
750+ problems in Kattis online judge with the lowest points [1.1..3.5] as of 19 July
2020 have been solved by us and are discussed in this book.

• A few outdated problem categories have been adjusted/removed (e.g., Combining Max
1D/2D Range Sum, etc). A few/emerging problem categories have been opened (e.g.,
Pre-calculate-able, Try All Possible Answer(s), Fractions, NP-hard/complete, etc).

• To help our readers avoid the “needle in a haystack” issue, we usually select only top
4 UVa+3 Kattis (or top 3 UVa+4 Kattis), totalling 7 starred problems, per category.
This reduce clutter and will help new competitive programmer to prioritize their train-
ing time on the better quality practice problems. This also saves a few precious pages
that can be used to improve the actual content of the book.

2Including 10 ICPC Asia Regional Wins in between the release of CP3 (2013) and CP4 (2020).
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• We have re-written almost every existing topic in the book to enhance their presen-
tation. We have integrated our freely accessible https://visualgo.net algorithm
visualization tool3 as far as possible into this book. Obviously, the content shown in
VisuAlgo will always be more up-to-date than the printed version as time goes on. All
these new additions may be subtle but may be very important to avoid TLE/WA in
the ever increasing di�culties of programming contest problems [17]. Many starred
exercises in CP3 that are now deemed to be ‘standard’ by year 2020 have been inte-
grated into the body text of this CP4 so do not be surprised to see a reduction of the
number of written exercises in some chapters.

• Re-organization of topics compared to CP3, especially to facilitate the cleaner Book 1
versus Book 2 split:

– Book 1 (Chapter 1-4)

1. We select and organize some of the easiest problems found in UVa and Kattis
online judges that were previously scattered in several chapters (especially
from Chapter 5/6/7) into a compilation of exercises for those who have only
started learning basic programming methodology in Chapter 1. It is now
much easier to get the first few ACs in UVa and/or Kattis online judge(s) to
kick start your Competitive Programming journey.

2. We move basic string processing problems and some easier Ad Hoc string
processing problems from Chapter 6 to Chapter 1 and highlight the usage of
short Python code to deal with these problems.

3. We move Roman numerals from Chapter 9 into Chapter 1, it is a rare but
simple Ad Hoc problem.

4. We move Inversion Index and Sorting in Linear Time from Chapter 9 into a
‘Special Sorting Problems’ sub-category in Chapter 2.

5. We move Bracket Matching and Postfix Conversion/Calculator from Chapter
9 into a ‘Special Stack-based Problems’ sub-category in Chapter 2.

6. We move basic Big Integer from Chapter 5 to Chapter 2 as it is essentially a
built-in data structure for Python (3) and Java users (still classified as our-
own library for C++ users). This way, readers can be presented with some
easier Big Integer-related problems from the earlier chapters in Book 1.

7. We move Order Statistics Tree from Chapter 9 as another non-linear data
structure with its C++ specific pbds library in Chapter 2.

8. We swap the order of two sections: Fenwick Tree (its basic form is much more
easier to understand for beginners) and Segment Tree (more versatile).

9. We move (Ad Hoc) Mathematics-related Complete Search problems from
Chapter 5 to Chapter 3.

10. We move Ad Hoc Josephus problem that mostly can be solved with Complete
Search from Chapter 9 to Chapter 3.

– With these content reorganizations, we are happy enough to declare that the
content of Book 1 satisfy most4 of the IOI syllabus [16] as of year 2020.

3VisuAlgo is built with modern web programming technologies, e.g., HTML5 SVG, canvas, CSS3,
JavaScript (jQuery, D3.js library), PHP (Laravel framework), MySQL, etc. It has e-Lecture mode for basic
explanations of various data structures and algorithms and Online Quiz mode to test basic understanding.

4Note that the IOI syllabus is an evolving document that is updated yearly.
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– Book 2 (Chapter 5-9)

1. We spread Java BigInteger specific features to related sections, e.g., Base
number conversion and simplifying fractions with GCD at Ad Hoc mathe-
matics section, probabilistic prime testing at Number Theory section, and
modular exponentiation at Matrix Power section.

2. We swap the order of two sections in Chapter 5: Number Theory (with
the expanded modular arithmetic section) and Combinatorics (some harder
Combinatorics problem now involve modular arithmetic).

3. We swap the order of two sections in Chapter 6: String Processing with DP
before String Matching. This is so that the discussion of String Matching
spread across three related subsections: standard String Matching (KMP),
Su�x Array, and String Matching with Hashing (Rabin-Karp).

4. We reorganize the categorization of many DP problems that we have solved
in Chapter 8.

5. We defer the discussion of Network Flow from Chapter 4 (in CP3) to Chapter
8 (in CP4) as it is still excluded from the IOI Syllabus [16] as of year 2020.

6. We move Graph Matching from Chapter 9 to Chapter 8, after the related Net-
work Flow section and before the new section on NP-hard/complete problems.

7. We add a new section on NP-complete decision and/or NP-hard optimization
problems in Competitive Programming, compiling ideas that were previously
scattered in CP3. We highlight that for such problem types, we are either
given small instances (where Complete Search or Dynamic Programming is
still su�cient) or the special case of the problem (where specialized polyno-
mial/fast algorithm is still possible—including Greedy algorithm, Network
Flow, or Graph Matching solutions).

• Chapter 1 changes:

1. We add short writeups about the IOI and ICPC, the two important international
programming competitions that use material in this book (and beyond).

2. We include Python (3) as one of the supported programming languages in this
book, especially for easier, non runtime-critical problems, Big Integer, and/or
string processing problems. If you can save 5 minutes of coding time on your first
Accepted solution and your team eventually solves 8 problems in the problem set,
this is a saving of 8⇥ 5 = 40 total penalty minutes.

3. We add some OCaml implementations (it is not yet used in the IOI or ICPC).

4. We use up-to-date Competitive Programming techniques as of year 2020.

• Chapter 2 changes:

1. Throughout this data structure chapter, we add much closer integration with our
own freely accessible visualization tool: VisuAlgo.

2. We add Python (3) and OCaml libraries on top of C++ STL and Java API.

3. We significantly expand the discussion of Binary Heap, Hash Table, and (bal-
anced) Binary Search Tree in Non-linear Data Structures section that are typically
discussed in a “Data Structures and Algorithms” course.
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4. We emphasize the usage of the faster Hash Tables (e.g., C++ unordered map)
instead of balanced BST (e.g., C++ map) if we do not need the ordering of keys
and the keys are basic data types like integers or strings. We also recommend the
simpler Direct Addressing Table (DAT) whenever it is applicable.

5. We highlight the usage of balanced BSTs as a powerful (but slightly slower)
Priority Queue and as another sorting tool (Tree Sort).

6. We discuss ways to deal with graphs that are not labeled with [0..V -1] and on
how to store some special graphs more e�ciently.

7. We enhance the presentation of the UFDS data structure.

8. We add more features of Fenwick Tree data structure: Fenwick Tree as (a variant
of) order statistics data structure, Range Update Point Query variant, and Range
Update Range Query variant.

9. We add more feature of Segment Tree data structure: Range Update with Lazy
Propagation to maintain its O(log n) performance.

• Chapter 3 changes:

1. We add two additional complete search techniques: Pre-calculate all (or some)
answers and Try all possible answers (that cannot be binary-searched; or when the
possible answers range is small). We also update iterative bitmask implementation
to always use LSOne technique whenever possible. We also add more complete
search tips, e.g., data compression to make the problem amenable to complete
search techniques. We also tried Python for Complete Search problems. Although
Python will mostly get TLE for harder Complete Search problems, there are ways
to make Python usable for a few easier Complete Search problems.

2. We now favor implementation of Binary Search the Answer (BSTA) using for loop
instead of while loop. We also integrate Ternary Search in this chapter.

3. We now consider greedy (bipartite) matching as another classic greedy problem.
We add that some greedy algorithms use Priority Queue data structure to dy-
namically order the next candidates greedily.

4. We now use the O(n log k) LIS solution (‘patience sort’, not DP) as the de-
fault solution for modern LIS problem. We now use LSOne technique inside the
O(2n�1 ⇥ n2) DP-TSP solution to allow it to solve n  [18..19] faster.

• Chapter 4 changes:

1. We redo almost all screenshots in this Chapter 4 using VisuAlgo tool.

2. We now set Kosaraju’s algorithm as the default algorithm for finding Strongly
Connected Components (SCCs) as it is simpler than Tarjan’s algorithm.

3. We significantly expand the Shortest Paths section with many of its known vari-
ations. We discuss and compare both versions of Dijkstra’s algorithm implemen-
tations. We move SPFA from Chapter 9, position this algorithm as Bellman-Ford
‘extension’, and called it as Bellman-Ford-Moore algorithm.

4. We significantly update the section on Euler graph and replace Fleury’s algorithm
with the better Hierholzer’s algorithm.

5. We add remarks about a few more special (rare) graphs and their properties.
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• Chapter 5 changes:

1. We expand the discussion of this easy but big Ad Hoc Mathematics-related prob-
lems. We identify one more recurring Ad Hoc problems in Mathematics: Fraction.

2. We recognize the shift of trend where the number of pure Big Integer problems
is decreasing and the number of problems that require modular arithmetic is
increasing. Therefore, the discussion on modular arithmetic in Number Theory
section have been significantly expanded and presented earlier before being used
in latter sections, e.g., Fermat’s little theorem/modular multiplicative inverse
is used in the implementation of Binomial Coe�cients and Catalan Numbers
in Combinatorics section, modular exponentiation is now the default in Matrix
Power section.

3. We expand the Combinatorics section with more review of counting techniques.

4. We expand the discussion of Probability-related problems.

5. We enhance the explanation of Floyd’s (Tortoise-Hare) cycle-finding algorithm
with VisuAlgo tool.

6. We integrate Matrix Power into this chapter, expanded the writeup about matrix
power, and integrate modular arithmetic techniques in this section.

• Chapter 6 changes:

1. We discuss Digit DP as one more string processing problem with DP.

2. We further strengthen our General Trie/Su�x Trie/Tree/Array explanation.

3. We add String Hashing as alternative way to solve string processing related prob-
lems including revisiting the String Matching problem with hashing.

4. We integrate and expand section on Anagram and Palindrome, both are classic
string processing problems that have variants with varying di�culties.

• Chapter 7 changes:

1. We further enhance the existing library routines, e.g., (the shorter to code) An-
drew’s Monotone Chain algorithm is now the default convex hull algorithm, re-
placing (the slightly longer to code and a bit slower) Graham’s Scan.

2. We redo the explanation and add VisuAlgo screenshots of algorithms on Polygon.

• Chapter 8 changes:

1. We now set the faster O(V 2 ⇥ E) Dinic’s algorithm as the default algorithm,
replacing the slightly slower O(V ⇥ E2) Edmonds-Karp algorithm. We also add
a few more network flow applications.

2. We expand the discussion of Graph Matching and its bipartite/non-bipartite +
unweighted/weighted variants. We augment the Augmenting Path algorithm with
the randomized greedy pre-processing step by default.

3. We add a few more problem decomposition related techniques and listed many
more such problems, ordered by their frequency of appearance.
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• Chapter 9 changes:

1. On top of enhancing previous writeups, we add more collection of new rare data
structures, algorithms, and/or programming problems that have not been listed
in the first eight chapters and did not appear in CP3. These new topics are:

(a) Square Root Decomposition,

(b) Heavy-Light Decomposition,

(c) Tree Isomorphism,

(d) De Bruijn Sequence,

(e) Fast Fourier Transform,

(f) Chinese Remainder Theorem,

(g) Lucas’ Theorem,

(h) Combinatorial Game Theory,

(i) Egg Dropping Puzzle,

(j) Dynamic Programming Optimization,

(k) Push-Relabel algorithm,

(l) Kuhn-Munkres algorithm,

(m) Edmonds’ Matching algorithm,

(n) Constructive Problem,

(o) Interactive Problem,

(p) Linear Programming,

(q) Gradient Descent.

• In summary, someone who only master CP3 (published back in 2013) content can be
easily beaten in a programming contest by someone who only master CP4 content
(published in year 2020).

Supporting Websites

This book has an o�cial companion web site at https://cpbook.net. The Methods to
Solve tool is in this web site too.

We have also uploaded (almost) all source code discussed in this book in the public
GitHub repository of this book: https://github.com/stevenhalim/cpbook-code.

Since the third edition of this book, many data structures and algorithms discussed in
this book already have interactive visualizations at https://visualgo.net.

All UVa Online Judge programming exercises in this book have been integrated in the
https://uhunt.onlinejudge.org/ tool.

All Kattis Online Judge programming exercises in this book can be easily accessed using
the “Kattis Hint Giver” Google Chrome extension (created by Steven’s student Lin Si Jie)
that integrates the content of Methods to Solve directly to Kattis’s problems pages.

xxv



PREFACE c� Steven, Felix, Suhendry

Copyright

In order to protect the intellectual property, no part of this book may be reproduced or
transmitted in any form or by any means, electronically or mechanically, including photo-
copying, scanning, uploading to any storage and retrieval system, without o�cial permission
of the authors.

To a better future of humankind,
Steven Halim, Felix Halim, and Suhendry Effendy

Singapore, 19 July 2020
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Chapter 1

Introduction

I want to compete in ICPC World Finals!
— A dedicated student

1.1 Competitive Programming

The core directive in ‘Competitive Programming’ is this: “Given well-known Computer
Science (CS) problems, solve them as quickly as possible!”.

Let’s digest the terms one by one. The term ‘well-known CS problems’ implies that in
competitive programming, we are dealing with solved CS problems and not research problems
(where the solutions are still unknown). Some people (at least the problem author) have
definitely solved these problems before. To ‘solve them’ implies that we1 must push our CS
knowledge to a certain required level so that we can produce working code that can solve
these problems too—at least in terms of getting the same output as the problem author
using the problem author’s secret2 test data within the stipulated time limit. The need to
solve the problem ‘as quickly as possible’ is where the competitive element lies—speed is a
very natural goal in human behavior.

An illustration: UVa Online Judge [44] Problem Number 10911 (Forming Quiz Teams).
Abridged Problem Description:

Let (x, y) be the integer coordinates of a student’s house on a 2D plane. There
are 2N students and we want to pair them into N groups. Let di be the distance
between the houses of 2 students in group i. Form N groups such that cost =

PN
i=1 di

is minimized. Output the minimum cost as a floating point number with 2 digits
precision in one line. Constraints: 1  N  8 and 0  x, y  1000.

Sample input (with explanation):
N = 2; Coordinates of the 2N = 4 houses are {1, 1}, {8, 6}, {6, 8}, and {1, 3}.
Sample output (with explanation):
cost = 4.83.

Can you solve this problem?
If so, how many minutes would you likely require to complete the working code?
Think and try not to flip this page immediately!

1Some programming competitions are done in a team setting to encourage teamwork as software engineers
usually do not work alone in real life.

2By hiding the actual test data from the problem statement, competitive programming encourages the
problem solvers to exercise their mental strength to think of many (if not all) possible corner cases of the
problem and test their programs with those cases. This is typical in real life where software engineers have
to test their software a lot to make sure that the software meets the requirements set by clients.

1
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Figure 1.1: Illustration of UVa 10911 - Forming Quiz Teams

Now ask yourself: Which of the following best describes you? Note that if you are
unclear with the material or the terminology shown in this chapter, you can re-read it
again after going through this book once.

• Uncompetitive programmer A (a.k.a. the blurry one):
Step 1: Reads the problem and becomes confused. (This problem is new for A).
Step 2: Tries to code something: Reading the non-trivial input and output.
Step 3: A realizes that these two ideas below are not Accepted (AC):
Greedy (Section 3.4): Repeatedly pairing the two remaining students with the
shortest separating distances gives the Wrong Answer (WA).
Näıve Complete Search: Using recursive backtracking (Section 3.2) and trying
all possible pairings yields Time Limit Exceeded (TLE).

• Uncompetitive programmer B (Gives up):
Step 1: Reads the problem and realizes that it is a graph matching problem.
But B has not learned how to solve this kind of problem...
B is not aware of the Dynamic Programming (DP) solution (Section 3.5)...
Step 2: Skips the problem and reads another problem in the problem set.

• (Still) Uncompetitive programmer C (Slow):
Step 1: Reads the problem and realizes that it is a di�cult problem: ‘minimum
weight perfect matching on a weighted complete graph’. However, since
the input size is small, this problem is solvable using DP. The DP state is a
bitmask that describes a matching status, and matching unmatched students i
and j will turn on two bits i and j in the bitmask (see Book 2).
Step 2: Codes I/O routine, writes recursive top-down DP, tests, debugs >.<...
Step 3: After 3 hours, C’s solution is AC (passed all the secret test data).

• Competitive programmer D:
Completes all the steps taken by uncompetitive programmer C in  30 minutes.

• Very competitive programmer E:
A very competitive programmer (e.g., the red coders in Codeforces [4]) would
solve this ‘well known’ problem in  10 minutes and possibly also aware of the
various other possible solutions for the (harder) variant(s) of this problem...

Please note that being well-versed in competitive programming is not the end goal, but only
a means to an end. The true end goal is to produce all-rounder computer scientists or pro-
grammers who are much readier to produce better software and to face harder CS research
problems in the future. This is one of the objectives of the International Olympiad in Infor-
matics (IOI) [31] and the vision of the founders of the International Collegiate Programming
Contest (ICPC) [57]. With this book, we play our little role in preparing the current and fu-
ture generations to be more competitive in dealing with well-known CS problems frequently
posed in the recent IOIs and ICPCs.

2
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Exercise 1.1.1: The greedy strategy of the uncompetitive programmer A above actually
works for the sample test case shown in Figure 1.1 as typically good problem authors do not
put their corner cases as sample test cases. Please give a better counter example!

Exercise 1.1.2: Analyze the time complexity of the näıve complete search solution by
uncompetitive programmer A above to understand why it receives the TLE verdict!

Exercise 1.1.3*: Actually, a clever recursive backtracking solution with pruning can still
solve this problem (with 1  N  8). Solve this problem without using a DP table!

1.2 The Competitions

There are a few international programming competitions in the world. In this section, we
outline two of the most important programming competitions. The authors of this book are
(heavily) involved in these programming competitions.

1.2.1 International Olympiad in Informatics (IOI)

History and Format

IOI was started in 1989 (in Bulgaria) and it has been around annually since then. Singapore
hosts3 IOI in 2020+2021 and the authors of this book play crucial roles in those two back-
to-back IOIs. The IOI statistics can be found at https://stats.ioinformatics.org/.

IOI format: (optional) high school selection, (optional) provincial selection, National
Olympiad in Informatics (NOI) or other national top 4 selection methods (as each coun-
try/region can only send up to 4 contestants to IOI per year), and finally the actual IOI
(usually held in the months of June to September).

Eligibility and Selection

IOI eligibility rule can be found in the IOI regulations [31].
As IOI participants can come from various (secondary or high) schools of a country/region,

established (large) teams usually do preliminary Internet based selection/aptitude test, con-
duct intensive training camps in a centralized location, and gradually narrow down their
team selection via NOI or other selection methods until only top 4 students remain. These
top 4 represent the best 4 young students in Informatics, especially in the area of competitive
programming, that can be found and available to represent their country/region that year.

IOI team of a certain country/region is usually headed by a team leader that has experi-
ence managing their national training and olympiad. Ministry of Education representatives
and/or onsite coach(es) from that country/region is/are also usually present.

Typical Contest Strategies

IOI competition consists of (usually) 2-hours practice4 session and two contest days5, 5 hours
per session. IOI is an individual contest6. Each contest (usually) consists of 3 tasks, usually
one easi(er), one medium, and one hard(er) task, which are further divided into subtasks
with various points.

3Online IOI in 2020 due to COVID-19.
4The problems are usually already distributed online a few weeks prior to the actual IOI.
5It is important to maintain stamina and emotional well-being for both contest days.
6IOI 2018 used a one-o↵ live statistics of task scores to help contestants identify easier tasks.
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The International Scientific Committee (ISC) will strive to make the sum of subtask
points to be as diverse as possible to minimize ties7 (especially along medal boundaries). To
make IOI training in various national teams more manageable, the ISC maintains the IOI
syllabus [16].

Coding speed is usually not a di↵erentiating factor in IOI. One can submit a 100 points
(full) solution at time 4h59m and still be rewarded with the same 100 points compared to
one that submits 100 points solution at 30m. Thus IOI emphasizes peak performance, i.e.,
ability to solve the (harder) subtasks instead of how fast one can solve the (easier) subtasks8.

Historically, to get a gold/silver/bronze medal, one should get 400+/300+/200+ points
(out of possible 600) after two contest days, respectively.

The main purpose of this book is to make the number of IOI participants scoring low total
points (under 70 points) after two contest days to be as low as possible. Not all subtasks in
IOI are hard as the ISC also needs to avoid demoralizing half of the contestants that will go
home without any medal. They are still future Computer Scientists after all.

What’s Next?

Many, but not all, of IOI medalists/alumni continue to study in the field of Computer
Science for their University degree9. Many of them (but not all) also join the next level
of Programming Contests: The ICPC (see the next subsection 1.2.2). Thus, if one already
knows this book from high school, he/she can use it throughout University too.

1.2.2 International Collegiate Programming Contests (ICPC)

History and Format

ICPC10 was established in 1970, originated from the USA, spread worldwide starting from the
1990s. Since 2000 (except 2003 and 2007), the winners are usually from Russian (especially
from 2012-2019) and Asian Universities.

ICPC format: (optional) University level selection, (optional) Preliminary contest, Re-
gional Contest (usually held in the months of October to December). The winners (and
sometimes the runner-ups and a few other slightly lower ranked teams) from various Region-
als will advance to World Finals in the following year (usually held in the months of April
to July). The participation levels grow significantly (< 10K in 2000, > 50K in 2020) [57].

As ICPC is a programming competition between Universities, the ICPC coaches are
usually University CS sta↵s who teach programming and/or algorithm classes.

ICPC competition runs for 5 hours. Each team consists of three University students.
Each team is only provided with one computer. Only submissions that are Accepted (fully
correct) will give +1 point to the team. Team gets penalty for each non-Accepted submission
(usually +20 minutes to their total time). Teams are ranked first by decreasing number of
problems solved and if ties, by lower penalty time, and if still ties (rare), by earlier time
of last Accepted submission. Most contests end with the second tie breaking criteria (the
winner and the runner up solved the same number of problems, one is faster than the other).
Win by a +1 margin is rare. Win by a +2 or more margin is extremely rare.

7ISC may use floating point scoring system to help achieve this objective, e.g., in IOI 2015, 2017, 2019.
8Implementing solution(s) for low-scoring subtask(s), no matter how fast one can code the solution,

consume a bit of contest time. Thus, this strategy is not optimal for top contestants who are aiming for
(good quality) medal who should think of the best possible solution for an extended duration first.

9Many are with scholarships.
10ICPC was previously under the auspices of Association of Computing Machinery (ACM).
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Eligibility and Selection

Unlike IOI, where contestants compete individually representing their own country/region,
in ICPC contestants can be from various nationalities, as long as they are representing the
same University and still eligible according to ICPC eligibility rule.

Established Universities usually conduct their own internal training, team formation and
selection, before sending the strong(er) teams to compete in the Regionals.

Typical Contest Strategies

ICPC problem sets are usually designed in such a way that all teams solve at least one
problem (to avoid totally demoralizing newcomers in the competition, this is what we strive
to help via this book), no team solves all problems (to make the contest interesting until the
end of the fifth hour), and all problems are solvable by at least one team (thus minimize the
number of ‘impossible’ problems that require much more than 5 hours to think and code out
the solution correctly – even for the perceived favorite team(s) before the contest).

We can break down a 5-hours ICPC into three big stages: The start, the mid-game, and
the end-game. In ICPC, time penalty11 plays a crucial role, hence the ability to find easy (or
easier) problems that are buried inside the 10-13 problems in the problem set and solve them
as quickly as possible with 0 or as few penalties as possible, is crucial. Some (but not all)
contests purposely designate problem A (the first page) to be the easiest problem. For top
teams, the performance at the start dictates the tone for the rest of the contest, i.e., leading
or playing catch up. Most top teams will run in individual mode at this stage, i.e., each of
the 3 team members try to solve the first 3 easiest problems individually. Teams that rely
on the public scoreboard to identify which problems are easier will always play catch up.

The mid-game usually starts around the second to the third hour. At this point, all three
team members should have read all problems (that have not been solved up to that point
of time) and rank them based on (perceived) di�culties (and after comparing it with the
current public scoreboard). For top teams, ability to keep generating results at this stage –
i.e., the queue of next problem(s) to be solved/coded is not empty – is very important. As
the unsolved problems at this stage are the medium-hard problems (according to that team),
good team work is important. Some top teams with 3 strong contestants can probably still
work as 3 individuals. Some teams will switch to a pair + 1 individual. The rest of the teams
probably have to pool all 3 team members’ strengths in bid to solve one more problem.

The end-game starts when all easy and medium problems (according to that team) have
been solved by the team and the team is left with problems that the team has not solved
before (or have to spend lots of time to solve during practice sessions). Top teams will only
have a few remaining problems left at this stage and should be able to estimate what is the
time needed to solve +1 more so that they can submit +1 more AC code at minute 299
rather than after minute 300. For many other teams, this stage is about salvaging the result
with all 3 members working on one last not-yet-solved problem, hoping that they do not
get stuck. Most contests do not end with a clean sweep where the winning team solve all
problems as the judges usually set the required theoretical total time to solve all problems
(by the perceived favorite team(s) before the contest) to be longer than 5 contest hours.

What’s Next?

Most competitive programmers will likely end their competition career after their last ICPC.
Good performance in ICPC during University days is probably a(n important) requirement
in order to excel in technical interviews in (top) IT companies.

11Some ex-IOI contestants may need to improve their implementation speed for ICPC.
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1.2.3 Other Programming Contests

Beyond University, there are other various programming competitions, mostly online (with
perhaps last onsite final). For example, Google CodeJam, Facebook Hacker Cup, Topcoder
Open, Codeforces contest, Internet Problem Solving Contest (IPSC), etc. These other pro-
gramming competitions are not specifically covered in this book.

1.3 Tips to be Competitive

If you strive to be like competitive programmers D or E as illustrated in Section 1.1—that
is, if you want to be selected (via provincial/state ! national team selections) to participate
and obtain a medal in the IOI [31], or to be one of the team members that represents your
University in the ICPC [57] (nationals ! Regionals ! and up to World Finals), or to do
well in other programming contests—then this book is definitely for you12!

In the subsequent chapters, you will learn many things from the basic to the intermediate
or even to the advanced13 data structures and algorithms that have frequently appeared in
recent programming contests, compiled from many sources [45, 7, 49, 38, 51, 40, 53, 1, 35, 6,
52, 39, 5, 54, 42, 18, 37, 36] (see Figure 1.4). You will not only learn the concepts behind the
data structures and algorithms, but also how to implement them e�ciently and apply them
to appropriate contest problems. On top of that, you will also learn many programming tips
derived from our own experiences that can be helpful in contest situations. We start this
book by giving you several general tips below:

1.3.1 Tip 1: Type Code Faster!

No kidding! Although this tip may not mean much as ICPC and (especially) IOI are not
typing contests, we have seen Rank i and Rank i + 1 ICPC teams separated only by a few
minutes14 and frustrated IOI contestants who miss out on salvaging important marks by not
being able to code a last-minute brute force solution properly. When you can solve the same
number of problems as your competitor, it will then be coding skill (your ability to produce
concise and robust code) and ... typing speed ... that determine the winner.

Try this typing test at https://www.typingtest.com and follow the instructions there
on how to improve your typing skill. Steven’s is ⇠85-95 wpm15, Felix’s is ⇠55-65 wpm, and
Suhendry’s is ⇠70-80 wpm. If your typing speed is much less than these numbers, please
take this tip seriously!

On top of being able to type alphanumeric characters quickly and correctly, you will
also need to familiarize your fingers with the positions of the frequently used programming
language characters: round () or curly {} or square [] or angle <> parentheses/brackets,
the semicolon ; and colon :, single quotes ‘’ for characters, double quotes “” for strings, the
ampersand &, the vertical bar or the ‘pipe’ |, the exclamation mark !, etc.

12Notice that in a (large) competition, there can only be one (or very few) winner(s), i.e., the probability
of not winning anything throughout your programming competition life is much higher than the opposite.
Thus, although you should still dream high and try to win at least one programming competition, you should
ultimately aim to better your programming and problem solving skills by reading books like this one.

13Whether you perceive the material presented in this book to be of easy, intermediate, or advanced level
depends on your programming, algorithmic, and problem solving skills prior to reading this book.

14Fast performance at the early stage of an ICPC is very beneficial. As an illustration, team A and team
B both solve a total of 8 problems. Team A gets its first AC only 5 minutes earlier than team B. They then
solve the next 7 problems at exactly the same speed. Team A wins by having 8⇥ 5 = 40 minutes lesser total
penalty time.

15A few of the authors’ ICPC World Finalist students have typing speed faster than 120+ wpm. Note
that the average typing speed globally is just ⇡ 40 wpm.
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As a little practice, try typing the C++ source code below as fast as possible16:

/* Forming Quiz Teams, the solution for UVa 10911 above */
#include <bits/stdc++.h> // include all libraries
using namespace std;

#define LSOne(S) ((S) & -(S)) // important speedup

int N; // max N = 8
double dist[20][20], memo[1<<16]; // 1<<16 = 2^16

double dp(int mask) { // DP state = mask
double &ans = memo[mask]; // reference/alias
if (ans > -0.5) return ans; // this has been computed
if (mask == 0) return 0; // all have been matched
ans = 1e9; // init with a large value
int two_pow_p1 = LSOne(mask); // speedup
int p1 = __builtin_ctz(two_pow_p1); // p1 is first on bit
int m = mask-two_pow_p1; // turn off bit p1
while (m) {

int two_pow_p2 = LSOne(m); // then, try to match p1
int p2 = __builtin_ctz(two_pow_p2); // with another on bit p2
ans = min(ans, dist[p1][p2] + dp(mask^two_pow_p1^two_pow_p2));
m -= two_pow_p2; // turn off bit p2

}
return ans; // memo[mask] == ans

}

int main() {
int caseNo = 0, x[20], y[20];
while (scanf("%d", &N), N) { // yes, we can do this :)

for (int i = 0; i < 2*N; ++i)
scanf("%*s %d %d", &x[i], &y[i]); // ‘%*s’ skips names

for (int i = 0; i < 2*N-1; ++i) // build distance table
for (int j = i+1; j < 2*N; ++j) // use ‘hypot’ function

dist[i][j] = dist[j][i] = hypot(x[i]-x[j], y[i]-y[j]);
for (int i = 0; i < (1<<16); ++i) memo[i] = -1.0;
printf("Case %d: %.2lf\n", ++caseNo, dp((1<<(2*N)) - 1));

}
return 0;

} // DP to solve min weighted perfect matching on small general graph

Source code: ch8/UVa10911.cpp|java|py|ml

For your reference, the explanations of this ‘Dynamic Programming with bitmask’ solution
are gradually given in Section 2.2, 3.5, and later in Book 2. Do not be alarmed if you do not
understand it yet.

16Notice that the typical Competitive Programming coding style actually violates many good Software
Engineering principles, e.g., over usage of global variables, usage of cryptic and incredibly short variable
names, inclusion of all available header files, over usage of bit manipulation, using namespace std, etc.
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1.3.2 Tip 2: Quickly Identify Problem Types

In recent ICPCs, the contestants (teams) are given a set of problems (⇡ 10-13 problems)
of varying types. From our observation of recent ICPC Asia Regionals and World Finals
problem sets, we can categorize the problems types and their rate of appearance as in Table
1.1. In IOIs, the contestants are given 6 tasks over 2 days17 that cover items 1-7 and a bit
of item 11, with a much smaller subset of items 8-11. For more details, please refer to the
IOI 1989-2008 problem classification [58] and the latest IOI syllabus [16].

No Category In This Book Frequency
1. Ad Hoc Section 1.4-1.6 1-2
2. (Heavy) Data Structure Chapter 2 0-1
3. Complete Search (Iterative/Recursive) Section 3.2++ 1-2
4. Divide and Conquer Section 3.3 0-1
5. Greedy (the non-classic ones) Section 3.4 1
6. Dynamic Programming (the non-classic ones) Section 3.5++ 1-2
7. Graph (except Network Flow/Graph Matching) Chapter 4 1
8. Mathematics Chapter 5 1-2
9. String Processing Chapter 6 1
10. Computational Geometry Chapter 7 1
11. Some Harder/Rare/Emerging Trend Problems Chapter 8-9 2-3

Total in Set is usually  14 10-17

Table 1.1: Recent ICPC (Asia) Regionals Problem Types

The classification in Table 1.1 is adapted from [43] and by no means complete. Some tech-
niques, e.g., ‘sorting’, are not classified here as they are ‘trivial’ and usually used only as
a ‘sub-routine’ in a bigger problem. We do not include ‘recursion’ as it is embedded in
categories like recursive backtracking or Dynamic Programming. Of course, problems some-
times require mixed techniques: a problem can be classified into more than one type, e.g.,
Floyd-Warshall algorithm is both a solution for the All-Pairs Shortest Paths (APSP, Section
4.5) graph problem and a Dynamic Programming (DP) algorithm (Section 3.5). Prim’s and
Kruskal’s algorithms are both solutions for the Minimum Spanning Tree (MST, Section 4.3)
graph problem and Greedy algorithms (Section 3.4). In Book 2, we will discuss (harder)
problems that require more than one algorithm and/or data structure to be solved.

In the (near) future, these classifications may change. One significant example is Dynamic
Programming. This technique was not known before 1940s, nor frequently used in IOIs or
ICPCs before mid-1990s, but it is considered a definite prerequisite today. As an illustration:
There were � 3 DP problems (out of 11) in ICPC World Finals 2010.

However, the main goal is not just to associate problems with the techniques required to
solve them like in Table 1.1. Once you are familiar with most of the topics in this book, you
should also be able to classify problems into the four types in Table 1.2.

No Category Confidence and Expected Solving Speed
A1. I have solved this type before I am sure that I can re-solve it again (and fast)
A2. I have solved this type before I am sure that I can re-solve it again (but slow)
B. I have seen this type before But that time I know that I cannot solve it yet
C. I have not seen this type before See the discussion below

Table 1.2: Problem Types (Compact Form)

17In year 2009-2010, IOI had 8 tasks over 2 days with at least 1 (very) easy task per day. However, this
format is no longer continued in favor of eas(ier) subtask 1 of all tasks.
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To be competitive, that is, do well in a programming contest, you must be able to confidently
and frequently classify problems as type A1 and minimize the number of problems that you
classify into type A2 or B. That is, you need to acquire su�cient algorithm knowledge and
develop your programming skills so that you consider many classical problems to be easy –
especially at the start of the contest.

However, to win a programming contest, you will also need to develop sharp problem
solving skills so that you (or your team) will be able to derive the required solution to a
hard/original type C problem in IOI or ICPC and do so within the duration of the contest,
not after the solution(s) is/are revealed by the problem author(s)/contest judge(s). Some of
the necessary problem solving skills are:

• Reducing the given problem into another (easier) problem,

• Reducing a known (NP-)hard problem into the given problem,

• Identifying subtle hints or special properties in the problem,

• Attacking the problem from a non-obvious angle/asking a di↵erent question,

• Compressing the input data,

• Reworking mathematical formulas,

• Listing observations/patterns,

• Performing case analysis of possible subcases of the problem, etc.

UVa/Kattis Title Problem Type Hint
wordcloud Word Cloud Section 1.6
turbo Turbo Section 2.4
10360 Rat Attack Complete Search or DP Section 3.2
hindex H-Index Section 3.3
11292 Dragon of Loowater Section 3.4
11450 Wedding Shopping Section 3.5
11512 GATTACA Book 2
10065 Useless Tile Packers Book 2
11506 Angry Programmer Book 2
bilateral Bilateral Projects Book 2
carpool Carpool Book 2

Table 1.3: Exercise: Read and Classify These UVa/Kattis Problems

Exercise 1.3.2.1: Read the UVa [44] and Kattis [34] problems in Table 1.3 and determine
their problem types. One of them has been identified for you. Filling this table should be
easy after mastering this book as all the techniques required to solve these problems are
discussed in this book.

Exercise 1.3.2.2*: Using the same list of problems shown in Table 1.3 above, please provide
the abridged versions of those problems in at most three sentences, omitting the irrelevant
details/storyline, but preserving the key points of the problems in such a way that another
competitive programmer who does not read the original problem descriptions can still write
correct solutions for those problems. See the first page of this book for an example!
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1.3.3 Tip 3: Do Algorithm Analysis

Once you have designed an algorithm to solve a particular problem in a programming contest,
you must then ask this question: Given the maximum input bound (usually given in a good
problem description), can the currently developed algorithm, with its time/space complexity,
pass the time/memory limit given for that particular problem?

Sometimes, there is more than one way to attack a problem. Some approaches may be
incorrect, others not fast enough, and yet others ‘overkill’. A good strategy is to brainstorm
for many possible algorithms and then pick the simplest solution that works (i.e., is fast
enough to pass the time and memory limit and yet still produce the correct answer)18!

Modern computers are quite fast and can process19 up to ⇡ 100M (or 108; 1M =
1 000 000) operations in one second. You can use this information to determine if your
algorithm will run in time. For example, if the maximum input size n is 100K (or 105;
1K = 1000), and your current algorithm has a time complexity of O(n2), common sense (or
your calculator) will inform you that (100K)2 or 1010 is a very large number that indicates
that your algorithm will require (on the order of) hundreds of seconds to run. You will thus
need to devise a faster (and also correct) algorithm to solve the problem. Suppose you then
find one that runs with a time complexity of O(n log2 n). Now, your calculator will inform
you that 105 log2 10

5 is just 1.7⇥ 106 and common sense dictates that the algorithm (which
should now run in under a second) will likely be able to pass the time limit.

The problem bounds are as important20 as your algorithm’s time complexity in determin-
ing if your solution is appropriate. Suppose that you can only devise a relatively-simple-to-
code algorithm that runs with a horrendous time complexity of O(n4). This may appear to
be an infeasible solution, but if n  50, then you have actually solved the problem. You can
implement your O(n4) algorithm with impunity since 504 is just 6.25M and your algorithm
should still run in around a second.

Note, however, that the order of complexity does not necessarily indicate the actual num-
ber of operations that your algorithm will require. If each iteration involves a large number of
operations (many floating point calculations, or a significant number of constant sub-loops),
or if your implementation has a high ‘constant’ in its execution (unnecessary repeated loops,
multiple passes of the data set, or even Input/Output (I/O) execution overhead), your code
may take longer to execute than expected. However, this is usually not a big issue as the
problem authors should have designed the time limits so that a few (more than one) rea-
sonable implementations of the algorithm with the intended target time complexity will all
achieve the Accepted (AC) verdict.

By analyzing the complexity of your algorithm with the given input bound and the stated
time/memory limit, you can better decide whether you should attempt to implement your
algorithm (which will take up precious time in the IOIs and ICPCs), attempt to improve
your algorithm first, or switch to other problems in the problem set.

As mentioned in the preface of this book, we will not discuss the concept of algorithmic
analysis in details. We assume that you already have this basic skill. There are a multitude
of other reference books (for example, the “Introduction to Algorithms” [5], “Algorithm De-
sign” [35], “Algorithms” [6], etc) that will help you to understand the following prerequisite
concepts/techniques in algorithmic analysis:

18Discussion: It is true that in programming contests, picking the simplest algorithm that works is crucial.
However, during training sessions without time constraint, it can be beneficial to spend more time trying
to solve a certain problem using the best possible algorithm. If we encounter a harder version of the problem
in the future, we will have a greater chance of obtaining and implementing the correct solution!

19Treat this as a rule of thumb. These numbers may vary from machine to machine and likely increases
(a bit) over time. A competitive programmer will test these numbers during practice session.

20If you are a problem author who read this book, please pay attention to bounds!
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• Basic time and space complexity analysis for iterative and recursive algorithms:

– An algorithm with k-nested loops of about n iterations each has O(nk) complexity.

– If your algorithm is recursive with b recursive calls per level and has L levels, the
algorithm has roughly O(bL) complexity, but this is a only a rough upper bound.
The actual complexity depends on what actions are done per level and whether
pruning is possible.

– A Dynamic Programming algorithm or other iterative routine which processes a
2D n ⇥ n matrix in O(k) per cell runs in O(k ⇥ n2) time. This is explained in
further detail in Section 3.5.

– Binary searching over a range of [1..n] has O(log n) complexity.

• More advanced algorithm analysis techniques:

– Prove the correctness of an algorithm (especially for Greedy algorithms in Section
3.4), to minimize your chance of getting the ‘Wrong Answer’ verdict.

– Perform the amortized analysis (e.g., see Chapter 17 of [5])—although rarely
used in contests—to minimize your chance of getting the ‘Time Limit Exceeded’
verdict, or worse, considering your algorithm to be too slow and skipping the
problem when it is in fact fast enough in amortized sense.

– Do output-sensitive analysis to analyze algorithm which (also) depends on output
size and minimize your chance of getting the ‘Time Limit Exceeded’ verdict. For
example, the time complexity of partial sort algorithm is O(n log k). The time
taken for this algorithm to run depends not only on the input size n but also the
output size—the required k smallest (or largest) numbers to be sorted (see more
details in Section 2.3.1).

• Familiarity with these bounds:

– 210 = 1024 ⇡ 103, 220 = 1048 576 ⇡ 106.

– 10! = 3 628 800 ⇡ 3 ⇤ 106, 11! = 39 916 800 ⇡ 4 ⇤ 107.
– 32-bit signed integers (int) and 64-bit signed integers (long long) have upper

limits of 231�1 ⇡ 2⇥109 (safe for up to ⇡ 9 decimal digits) and 263�1 ⇡ 9⇥1018

(safe for up to ⇡ 18 decimal digits), respectively.

– Unsigned integers can be used if only non-negative numbers are required. 32-bit
unsigned integers (unsigned int) and 64-bit unsigned integers (unsigned long
long) have upper limits of 232 � 1 ⇡ 4⇥ 109 and 264 � 1 ⇡ 1⇥ 1019, respectively.

– If you need to store integers � 264, use Big Integer21 (see Section 2.2.4).

– There are n! permutations and 2n subsets (or combinations) of n distinct elements.

– The best time complexity of a comparison-based sorting algorithm is ⌦(n log2 n).

– The largest input size n for typical programming contest problems must be < 1M .
Beyond that, the Input/Output (I/O) routine will be the bottleneck.

– Usually, O(n log2 n) algorithms are su�cient to solve most contest problems for a
simple reason: O(n log2 n) and the theoretically better O(n) algorithms are hard
to di↵erentiate empirically under programming contest environment with strict
time limit, n < 1M , and the need to support > 1 programming languages.

21
gcc has built-in type int128 but this data type is rarely useful in competitive programming setting.
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Many novice programmers would skip this phase and immediately implement the first (näıve)
algorithm that they can think of only to realize that the chosen data structure and/or
algorithm is/are not e�cient enough (or wrong). Our advice for ICPC contestants22: refrain
from coding until you are sure that your algorithm is both correct and fast enough.

To help you understand the growth of several common time complexities, and thus help
you judge how fast is ‘enough’, please refer to Table 1.4. Variants of such tables are also
found in many other books on data structures and algorithms. This table is written from
a programming contestant’s perspective. Usually, the input size constraints are given in a
(good) problem description. With the assumption that a typical year 2020 CPU can execute
a hundred million (108) operations in around 1 second23 (the typical time limit in most
UVa/Kattis problems [44, 34]), we can predict the ‘worst’ algorithm that can still pass the
time limit24. Usually, the simplest algorithm has the poorest time complexity, but if it can
already pass the time limit, just use it!

n Worst AC Algorithm Comment
 [10..11] O(n!), O(n6) e.g., Enumerating permutations (Section 3.2)
 [17..19] O(2n ⇥ n2) e.g., DP TSP (Section 3.5.2)
 [18..22] O(2n ⇥ n) e.g., DP with bitmask technique (Book 2)
 [24..26] O(2n) e.g., try 2n possibilities with O(1) check each
 100 O(n4) e.g., DP with 3 dimensions + O(n) loop, nCk=4

 450 O(n3) e.g., Floyd-Warshall (Section 4.5)
 1.5K O(n2.5) e.g., Hopcroft-Karp (Book 2)
 2.5K O(n2 log n) e.g., 2-nested loops + a tree-related DS (Section 2.3)
 10K O(n2) e.g., Bubble/Selection/Insertion Sort (Section 2.2)
 200K O(n1.5) e.g., Square Root Decomposition (Book 2)
 4.5M O(n log n) e.g., Merge Sort (Section 2.2)
 10M O(n log log n) e.g., Sieve of Eratosthenes (Book 2)
 100M O(n), O(log n), O(1) Most contest problem have n  1M (I/O bottleneck)

Table 1.4: Rule of Thumb for the ‘Worst AC Algorithm’ for various single-test-case input
sizes n, assuming that a year 2020 CPU can compute 100M operations in 1 second.

From Table 1.4, we see the importance of using good algorithms with small orders of growth
as they allow us to solve problems with larger input sizes25. But a faster algorithm is usually
non-trivial and sometimes substantially harder to implement. In Section 3.2.3, we discuss a
few tips that may allow the same class of algorithms to be used with larger input sizes. In
subsequent chapters, we also explain e�cient algorithms for various computing problems.

22Unlike ICPC, the IOI tasks can usually be solved (partially or fully) using several possible solutions,
each with di↵erent time complexities and subtask scores. To gain valuable points, it may be good to initialy
use a brute force solution to score a few points especially if it is easy/short to code and to understand the
problem better. There will be no significant time penalty as IOI is not a speed contest. Then, iteratively
improve the solution to gain more points.

23In CP3, the previous assumption was 108 operations in 3s. Notice that CPU speed does not double
every one/two year(s) recently and Competitive Programming has not venture into multi-threading yet.

24Try problem Kattis - tutorial *.
25It will be hard for the programming contest judges to di↵erentiate fast or slow solutions automatically

when the highly variable I/O speed heavily influences the overall runtime speed measurements and hence
they will not set insanely large test cases (typically, n  1M).
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Exercise 1.3.3.1: Please answer the questions below using your current knowledge about
classic algorithms and their time complexities. After you have finished reading this book
once, it may be beneficial to attempt this exercise again.

1. There are n webpages (1  n  10M). Page i has a page rank ri. A new page can
be added or an existing page can be removed frequently. You want to pick the current
top 10 pages with the highest page ranks, in order. Which method is better?

(a) Load all n webpages’ page rank to memory, sort (Section 2.2) them in descending
page rank order, and obtain the current top 10.

(b) Use a Priority Queue data structure (Section 2.3).

(c) Use the QuickSelect algorithm (Section 2.3.4).

2. Given a list L with 100K integers, you need to frequently obtain sum(i, j), i.e., the
sum of L[i] + L[i+1] + ...+ L[j]. Which data structure should you use?

(a) Simple Array pre-processed with Dynamic Programming (Section 2.2 & 3.5).

(b) Balanced Binary Search Tree (Section 2.3).

(c) Segment Tree (Section 2.4.4).

(d) Fenwick (Binary Indexed) Tree (Section 2.4.3).

(e) Su�x Tree or its alternative, Su�x Array (Book 2).

3. Given an M ⇥N integer matrix Q (1  M,N  70), determine if there exists a sub-
matrix S of Q of size A ⇥ B (1  A  M, 1  B  N) where mean(S) = 7. Which
algorithm will not exceed 100M operations per test case in the worst case?

(a) Try all possible sub-matrices and check if the mean of each sub-matrix is 7.
This algorithm runs in O(M3 ⇥N3).

(b) Try all possible sub-matrices, but in O(M2⇥N2) with this technique: .

4. Given a multiset S of M = 100K integers, we want to know how many di↵erent
integers that we can form if we pick two (not necessarily distinct) integers from S and
sum them. The content of multiset S is prime numbers not more than 20K. Which
algorithm will not exceed 100M operations per test case in the worst case?

(a) Try all possible O(M2) pairs of integers and insert their sums into a hash table
(O(1) per insertion). Finally, report the final size of the hash table.

(b) Perform an algorithm as above, but after performing this technique: .

5. You have to compute the shortest path between two vertices on a weighted Directed
Acyclic Graph (DAG) with |V |, |E|  100K. Which algorithm(s) can be used?

(a) Dynamic Programming (Section 3.5, 4.2.6, & 4.6.1).

(b) Breadth First Search (Section 4.2.3 & 4.4.2).

(c) Dijkstra’s (Section 4.4.3).

(d) Bellman-Ford (Section 4.4.4).

(e) Floyd-Warshall (Section 4.5).

13



1.3. TIPS TO BE COMPETITIVE c� Steven, Felix, Suhendry

6. Which algorithm produces a list of the first 10M prime numbers with the best time
complexity? (Book 2)

(a) Sieve of Eratosthenes.

(b) 8i 2 [1..10M], if isPrime(i) is true, add i in the list.

7. How to test if the factorial of n, i.e., n! is divisible by an integer m? 1  n  1014.

(a) Test if n! % m == 0.

(b) The näıve approach above will not work, use: (Book 2).

8. You want to enumerate all occurrences of a substring P (of length m) in a (long)
string T (of length n), if any. Both n and m have a maximum of 1M characters.
Which algorithm is faster?

(a) Use the following C++ code snippet:

for (int i = 0; i < n-m; ++i) {
bool found = true;
for (int j = 0; (j < m) && found; ++j)

if ((i+j >= n) || (P[j] != T[i+j]))
found = false;

if (found)
printf("P is found at index %d in T\n", i);

}

(b) There are better algorithms, we can use: (Book 2).

9. Given a set S of N points scattered on a 2D plane (2  N  5 000), find two points
2 S that have the greatest separating Euclidean distance. Is an O(N2) complete search
algorithm that tries all possible pairs feasible?

(a) Yes, such complete search is possible.

(b) No, we must find another way. We must use: .

10. See Question above, but now with a larger set of points: 2  N  200K and one
additional constraint: The points are randomly scattered on a 2D plane.

(a) The O(N2) complete search can still be used.

(b) The näıve approach above will not work, use: (Book 2).

11. See the same Question above. We still have a set of 2  N  200K points. But this
time there is no guarantee that the points are randomly scattered on a 2D plane.

(a) The O(n2) complete search can still be used.

(b) The better solution using algorithm in Book 2 can still be used.

(c) We need to use:
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1.3.4 Tip 4: Master Programming Languages

There are several programming languages supported in ICPC26, including C/C++, Java,
and Python. Which programming languages should one aim to master?

Our experience gives us this answer: we prefer C++ (std=gnu++17) with its built-in
Standard Template Library (STL) but we still need to master Java and some knowledge
of Python. Even though it is slower, Java has powerful built-in libraries and APIs such as
BigInteger/BigDecimal, GregorianCalendar, Regex, etc. Java programs are easier to debug
with the virtual machine’s ability to provide a stack trace when it crashes (as opposed to
core dumps or segmentation faults in C/C++). Similarly, Python code can be surprisingly
very short for some suitable tasks. On the other hand, C/C++ has its own merits as
well. Depending on the problem at hand, either language may be the better choice for
implementing a solution in the shortest time.

Suppose that a problem requires you to compute 40! (the factorial of 40). The answer is
very large: 815 915 283 247 897 734 345 611 269 596 115 894 272 000 000 000. This far exceeds
the largest built-in primitive integer data type (unsigned long long: 264 � 1). As there is
no built-in arbitrary-precision arithmetic library in C/C++ as of yet, we would have needed
to implement one from scratch. The Python code, however, is trivially short:

import math
print(math.factorial(40)) # all built-in

The Java code for this task is also simple (more details in Section 2.2.4):

import java.util.Scanner;
import java.math.BigInteger;
class Main { // default class name

public static void main(String[] args) {
BigInteger fac = BigInteger.ONE;
for (int i = 2; i <= 40; ++i)

fac = fac.multiply(BigInteger.valueOf(i)); // it is in the library!
System.out.println(fac);

}
}

Mastering and understanding the full capability of your favourite programming language is
also important. Take this problem with a non-standard input format: The first line of input
is an integer N . This is followed by N lines, each starting with the character ‘0’, followed
by a dot ‘.’, then followed by an unknown number of target digits (up to 100 digits), and
finally terminated with three dots ‘...’. Your task is to extract these target digits.

26[This is a personal opinion]. In IOI 2019 competition rules, the programming languages allowed in IOI
are C++ and Java (two older programming languages: Pascal and C have been retired recently). The ICPC
World Finals 2019 (and thus most Regionals) allows C, C++, Java, and Python (partially) to be used in the
contest. Therefore, it seems that the ‘best’ language to master as of year 2020 is still C++ (std=gnu++17)
as it is supported in both competitions, a fast language, and has strong STL support. If IOI contestants
choose to master C++, they will have the benefit of being able to use the same language (with an increased
level of mastery) for ICPC in their University level pursuits. Note that OCaml is not currently used in the
IOI or ICPC.
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3
0.1227...
0.517611738...
0.7341231223444344389923899277...

One possible solution is as follows:

#include <bits/stdc++.h> // include all
using namespace std;
int main() {

int N; scanf("%d\n", &N);
while (N--) { // loop from N,N-1,...,0

char x[110]; // set size a bit larger
scanf("0.%[0-9]...\n", &x); // ‘&’ is optional here
// note: if you are surprised with the technique above,
// please check scanf details in https://en.cppreference.com/w/
printf("the digits are 0.%s\n", x);

}
return 0;

}

Not many C/C++ programmers are aware of partial regex capabilities built into the C
standard I/O library. Although scanf/printf are C-style I/O routines, they can still be
used in C++ code. Many C++ programmers ‘force’ themselves to use cin/cout all the time
even though it is sometimes not as flexible as scanf/printf and is also (far) slower27.

One more simple example. You are given a 2D matrix. Your job is to transpose the 2D
matrix and display the result. For example, Let 2D matrix A = [(1, 2, 3), (4, 5, 6)], i.e.,
a 2 ⇥ 3 matrix. For this input, we should output A0 = [(1, 4), (2, 5), (3, 6)], i.e., a 3 ⇥ 2
transposed matrix. If you are thinking of writing of a (2D nested for-) loop based solution,
you probably not aware of the following elegant Python solution:

A = [(1, 2, 3), (4, 5, 6)] # list A = 2 tuples of 3
[*zip(*A)] # [(1, 4), (2, 5), (3, 6)]

In programming contests, especially ICPCs, coding time should not be the primary bottle-
neck. Once you figure out the ‘worst AC algorithm’ that will pass the given time limit, you
are expected to be able to translate it into a bug-free code quickly!

Source code: ch1/factorial.py|java; ch1/scanf.cpp|ml; ch1/zip.py

Now, try some of the exercises below! If you need more than 15 lines of code to solve any of
them (compare your answers with the modal solutions at Section 1.7), you should revisit and
update your knowledge of your programming language(s)! A mastery of the programming
languages that you use and their built-in routines is extremely important and will help you
a lot in programming contests.

27One can use ios::sync with stdio(false); cin.tie(NULL); to avoid costly synchronization. This
way, cin/cout can run faster albeit still a bit slower than scanf/printf.
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Exercise 1.3.4.1: Produce a working code that is as concise as possible for the following
tasks below. Unless explicitly stated, you are allowed to use any programming language that
you are most comfortable with.

1. Using Java, read in a double
(e.g., 1.4732, 15.324547327, etc.)
echo it, but with a minimum field width of 7 and 3 digits after the decimal point
(e.g., ss1.473 (where ‘s’ denotes a space), s15.325, etc.)

2. Given an integer n (n  15), print ⇡ to n digits after the decimal point (rounded).
(e.g., for n = 2, print 3.14; for n = 4, print 3.1416; for n = 5, prints 3.14159.)

3. Given a date (in the past), determine the day of the week (Monday, . . . , Sunday) on
that day and the number of day(s) that has elapsed since that day until present.
(e.g., 9 August 2010—the launch date of the first edition of this book—is a Monday.)

4. Given n random integers, print the distinct (unique) integers in sorted order.

5. Given the distinct and valid birthdates of n people as triples (DD, MM, YYYY), order
them first by ascending birth months (MM), then by ascending birth dates (DD), and
finally by ascending age.

6. Given a list of sorted integers L of size up to 1M items, determine whether a value v
exists in L with no more than 20 comparisons (more details in Section 2.2).

7. Generate all possible permutations of {‘A’, ‘B’, ‘C’, . . . , ‘J’}, the first N = 10 letters
in the alphabet (see Section 3.2.1).

8. Generate all possible subsets of {1, 2, . . . , 20}, the first N = 20 positive integers (see
Section 3.2.1).

9. Given a string that represents a base X number, convert it to an equivalent string in
base Y, 2  X, Y  36. For example: “FF” in base X = 16 (hexadecimal) is “255” in
base Y1 = 10 (decimal) and “11111111” in base Y2 = 2 (binary). See Book 2.

10. Let’s define a ‘special word’ as a lowercase alphabet followed by two consecutive digits.
Given a string, replace all ‘special words’ of length 3 with 3 stars “***”, e.g.,
S = “line: a70 and z72 will be replaced, aa24 and a872 will not”
should be transformed into:
S = “line: *** and *** will be replaced, aa24 and a872 will not”.

11. Given an integer X that can contain up to 20 digits, output ‘Prime’ if X is a prime or
‘Composite’ otherwise.

12. Given a valid mathematical expression involving ‘+’, ‘-’, ‘*’, ‘/’, ‘(’, and ‘)’ in a sin-
gle line, evaluate that expression. (e.g., a rather complicated but valid expression 3
+ (8 - 7.5) * 10 / 5 - (2 + 5 * 7) should produce -33.0 when evaluated with
standard operator precedence.)
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1.3.5 Tip 5: Master the Art of Testing Code

You thought you had nailed a particular problem. You had identified its problem type,
designed the algorithm for it, verified that the algorithm (with the data structures it uses)
would run in time (and within memory limits) by considering the time (and space) complex-
ity, and implemented the algorithm, but your solution is still not Accepted (AC).

Depending on the programming contest, you may or may not get credit for solving the
problem partially. In ICPC, you will only get points for a particular problem if your team’s
code solves all the secret test cases for that problem. Other verdicts such as Presentation
Error (PE)28, Wrong Answer (WA), Time Limit Exceeded (TLE), Memory Limit Exceeded
(MLE), Run Time Error (RTE), etc, do not increase your team’s points. In current IOI (2010-
2019), the subtask scoring system is used. Test cases are grouped into subtasks which are the
simpler variants of the original task with smaller input bounds or with special simplifying
assumption(s). You are credited for solving a subtask if your code solves all test cases in it.
You can use the full feedback system to view the judge’s evaluation of your code.

In either case, you will need to be able to design good, comprehensive, and tricky test
cases. The sample input-output given in the problem description is by nature trivial and
only there to aid understanding of the problem statement. Therefore, the sample test cases
are usually insu�cient for determining the correctness of your code.

Rather than wasting submissions (and thus accumulating time or score penalties) in
ICPC (not so much penalized in recent IOIs but still consume contest time), you may want
to design tricky test cases for testing your code on your own machine29. Ensure that your
code is able to solve them correctly (otherwise, there is no point submitting your solution
since it is likely to be incorrect—unless you want to test the test data bounds).

Some coaches encourage their students to compete with each other by designing test
cases. If student A’s test cases can break student B’s code, then A will get bonus points.
You may want to try this in your team training :).

Here are some guidelines for designing good test cases from our experience. These are
typically the steps that have been taken by problem authors:

1. Your test cases should include the sample test cases since the sample output is guar-
anteed to be correct. Use ‘fc’ in Windows or ‘diff’ in UNIX to check your code’s
output (when given the sample input) against the sample output. Avoid manual com-
parison as humans are prone to error and are not good at performing such tasks,
especially for problems with strict output formats (e.g., blank line between test cases
versus after every test cases). To do this, copy and paste the sample input and sample
output from the problem description, then save them to files (named as ‘in’ and ‘out’
or anything else that is sensible). Then, after compiling your program (let’s assume
the executable’s name is the ‘g++’ default ‘a.out’), execute it with an I/O redirec-
tion: ‘./a.out < in > myout’. Finally, execute ‘diff myout out’ to highlight the
(potentially subtle) di↵erences, if any exist.

2. For problems with multiple test cases in a single run (see Section 1.4.2), you should
include two identical sample test cases consecutively in the same run. Both must
output the same known correct answers. This helps to determine if you have forgotten
to initialize any variables—if the first instance produces the correct answer but the
second one does not, it is likely that you have not reset your variables.

28This verdict is now rare in modern Online Judges, e.g., Kattis [34].
29[This is a personal opinion]. Programming contest environments di↵er from one contest to another. This

can disadvantage contestants who rely too much on fancy Integrated Development Environment (IDE) (e.g.,
Visual Studio, IntelliJ Idea, Eclipse, NetBeans, etc) for debugging. It may be a good idea to practice coding
with just a text editor and a compiler!
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3. Your test cases should include tricky corner cases. Think like the problem author and
try to come up with the worst possible input for your algorithm by identifying cases
that are ‘hidden’ or implied within the problem description. These cases are usually
included in the judge’s secret test cases but not in the sample input and output.
Corner cases typically occur at extreme values such as N = 0, N = 1, negative
values, large final (and/or intermediate) values that do not fit 32-bit signed integer,
empty/line/tree/bipartite/cyclic/acyclic/complete/disconnected graph, etc.

4. Your test cases should include large cases. Increase the input size incrementally up to
the maximum input bounds stated in the problem description. Use large test cases with
trivial structures that are easy to verify with manual computation and large random
test cases to test if your code terminates in time and still produces reasonable output
(since the correctness would be di�cult to verify here). Sometimes your program may
work for small test cases, but produces wrong answer, crashes, or exceeds the time
limit when the input size increases. If that happens, check for overflows, out of bound
errors, or improve your algorithm.

5. Though this is rare in modern programming contests, do not assume that the input
will always be nicely formatted if the problem description does not explicitly state it
(especially for a badly written problem). Try inserting additional whitespace (spaces,
tabs) in the input and test if your code is still able to obtain the values correctly
without crashing.

However, after carefully following all these steps, you may still get non-AC verdicts. In ICPC,
you (and your team) can actually consider the judge’s verdict and the scoreboard (usually
available for the first four hours of the contest) in determining your next course of action. In
recent IOIs (2015-present), contestants can actually check the correctness of their submitted
code against the secret test cases due to the informative full feedback system. With more
experience in such contests, you will be able to make better judgments and choices.

Exercise 1.3.5.1: Situational awareness
(mostly applicable in the ICPC setting—this is not as relevant in IOI).

1. You receive a WA verdict for a very easy problem. What should you do?

(a) Abandon this problem for another.

(b) Improve the performance of your solution (code optimizations/better algorithm).

(c) Carefully re-read the problem description again.

(d) Create tricky test cases to find the bug.

(e) (In team contest): Ask your team mate to re-do the problem.

2. You receive a TLE verdict for your O(N3) solution.
However, the maximum N is just 100. What should you do?

(a) Abandon this problem for another.

(b) Improve the performance of your solution (code optimizations/better algorithm).

(c) Create tricky test cases to find the bug.

3. Follow up to Question above: What if the maximum N is 100 000?
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4. Another follow up Question: What if the maximum N is 5000, the output only depends
on the size of input N , and you still have four hours of competition time left?

5. You receive an RTE verdict. Your code (seems to) execute perfectly on your machine.
What should you do?

6. Thirty minutes into the contest, you take a glance at the scoreboard. There are many
other teams that have solved a problem X that your team has not attempted. What
should you do?

7. Midway through the contest, you take a glance at the scoreboard. The leading team
(assume that it is not your team) has just solved problem Y . What should you do?

8. Your team has spent two hours on a nasty problem. You have submitted several im-
plementations by di↵erent team members. All submissions have been judged incorrect.
You have no idea what’s wrong. What should you do?

9. There is one hour to go before the end of the contest. You have 1 WA code and 1 fresh
idea for another problem. What should you (or your team) do?

(a) Abandon the problem with the WA code, switch to the other problem in an
attempt to solve one more problem.

(b) Insist that you have to debug the WA code. There is not enough time to start
working on a new problem.

(c) (In ICPC): Print the WA code. Ask two other team members to scrutinize it while
you switch to that other problem in an attempt to solve two more problems.

Exercise 1.3.5.2: Find the subtle bug inside the following short C++ code:

1. Find the Least Significant One bit of a 32-bit signed integer (7� 5) using
#define LSOne(S) (S & -S).

2. Using builtin ctz(v) to count the number of trailing zeroes in a 64-bit signed int
long long v.

3. Using ms.erase(v) to delete just one copy of value v from a multiset<int> ms that
may contain 0, 1, or more copies of v.

4. Assume that v is a vector<int> that contains a few random integers.
for (int i = 1; i <= 4; ++i) v.push back(i); // try changing 4 to 5
vector<int>::iterator it = v.begin();
cout << *it << "
n"; // should output v[0] = 1
v.push back(rand()); // increase vector size by 1
cout << *it << "
n"; // isn’t v[0] should remain 1?

5. Similar subtle bug as above.
for (int i = 1; i <= 4; ++i) v.push back(i); // try changing 4 to 5
auto &front = v[0]; // pass by reference
cout << front << "
n"; // should output v[0] = 1
v.push back(rand()); // increase vector size by 1
cout << front << "
n"; // isn’t v[0] should remain 1?
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1.3.6 Tip 6: Practice and More Practice

Competitive programmers, like real athletes, must train regularly and keep ‘programming-
fit’. Thus in our second last tip, we provide a list of several websites with resources that
can help improve your problem solving skill. We believe that success comes as a result of a
continuous e↵ort to better yourself.

The University of Valladolid (UVa, from Spain) Online Judge30 (https://onlinejudge.
org, [44]) contains past (older) ICPC contest problems (Locals, Regionals, and up to World
Finals) plus problems from other sources, including various problems from custom contests.
You can solve these problems and submit your solutions to the Online Judge. The correctness
of your program will be reported as soon as possible. Try solving the problems mentioned
in this book and you might see your name on the top-500 authors rank list someday :-).

As of 19 July 2020, one needs to solve � 699 problems to be in the top-500. Steven is
ranked 39 (for solving 2074 problems), Felix is ranked 72 (for solving 1550 problems), and
Suhendry is ranked 124 (for solving 1262 problems) out of ⇡ 365 857 users (and a total of ⇡
4965 problems), i.e., all three of us are actually at the top 99.9-th percentile.

This (UVa) Online Judge, being one of the oldest online judge, has many third party
tools built to help its users, e.g., our own uHunt (https://uhunt.onlinejudge.org/) and
UDebug (https://www.udebug.com/).

Figure 1.2: Left: (UVa) Online Judge; Right: Kattis

Kattis (https://open.kattis.com, [34]) is the recent ICPCWorld Finals judging system. It
has a public (open) online judge that contains interesting problems from recent ICPC World
Finals/Regional Contests, and other good quality contests. Instead of ranking users by raw
number of problems solved as with (UVa) Online Judge, Kattis uses her own ‘dynamic’
problem di�culty rating classification. That is, a very good competitive programmer can
quickly move up in ranks by purposely solving harder/higher rating problems than the
competitors who can only solve trivial/easy/lower rating problems. As of 19 July 2020, one
needs to get � 1792.7 points to be in the top-100. Steven is ranked 9 (with 5742.7 points)
out of ⇡ 141 132 Kattis users, i.e., also at the top 99.9-th percentile.

In CP4, we use both (UVa) Online Judge and Kattis online judges as our primary source
of inspiring problems.

Figure 1.3: Left: USACO; Right: ICPC Live Archive

30This Online Judge is no longer a�liated with the University of Valladolid (UVa) since year 2019. It
is now simply called as ‘Online Judge’. However, for backwards compatibility, we still refer to its classic
abbreviation ‘UVa’ in this book.
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The USA Computing Olympiad has a very useful training website [43] with online contests
to help you learn programming and problem solving skills. This is geared for IOI participants
more than for ICPC participants. Go straight to their website and train.

UVa’s ‘sister’ online judge is the ICPC Live Archive [30] that contains almost all recent
ICPC Regionals and World Final problem sets 1990-2018. Train here if you want to do well
in future ICPCs. Some Live Archive problems are mirrored in the (UVa) Online Judge and
more recent World Finals problem sets are also available at Kattis.

Codeforces [4] and Topcoder [29] arrange frequent online programming contests that are
not restricted by age. This online judge uses a rating system (red, orange, violet, blue, cyan,
etc coders) to reward contestants who are really good at problem solving under the tight and
stressful contest environment with a higher rating as opposed to more diligent contestants
who happen to solve a higher number of easier problems over a (much) longer duration,
with less pressure, and perhaps with help from hints/problem solution editorials that may
become available after a programming contest is concluded.

1.3.7 Tip 7: Team Work (for ICPC)

This last tip is not something that is easy to teach, but here are some ideas that may be
worth trying for improving your team’s performance:

• Practice coding (or writing pseudo-code) on a blank paper. This is useful when your
teammate is using the computer. When it is your turn to use the computer, you can
then just type the code as fast as possible.

• The ‘submit and print’ strategy: If your code gets an AC verdict, ignore the printout.
If it still is not AC, debug your code using that printout (and let your teammate uses
the computer for other problem). Beware: Debugging without the computer is not an
easy skill to master. You may want to consider being a Teaching Assistant of a basic
programming methodology course in your University to develop the skill of identifying
various subtle bugs in others’ code (and to avoid making them yourself).

• If your teammate is currently coding (and you have no idea for other problems), then
prepare hard corner-case test data (and hopefully your teammate’s code passes all
those). With two team members agreeing on the (potential) correctness of a code, the
likelihood of having lesser (or no) penalty increases.

• If you aware that your team mate is (significantly) stronger on a certain problem type
than yourself and you are currently reading a problem with such type (especially at
the early stage of the contest), consider passing the problem to your teammate instead
of insisting to solve it yourself.

• Practice coding a rather long/complicated algorithm together as a pair or even as a
triple (with a coding time limit pressure) for the end-game situation where your team
is aiming to get +1 more AC in the last few minutes.

• The X-factor: Befriend your teammates outside of training sessions and contests.
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1.4 Getting Started: The Easy Problems

Note: You can skip this section if you are a veteran participant of programming contests.
This section is meant for readers who are (very) new to competitive programming.

1.4.1 Anatomy of a Programming Contest Problem

A programming contest problem usually contains the following components:

• Background story/problem description. Most problem descriptions are interest-
ing. However, the easier problems are usually written to deceive contestants and made
to appear di�cult, for example by adding ‘extra information’ to create a diversion.
Contestants should be able to filter out these unimportant details and focus on the
essential ones. For example, the entire opening paragraphs except the last sentence in
UVa 00579 - ClockHands are about the history of the clock and is completely unrelated
to the actual problem. However, harder problems are usually written as succinctly as
possible—they are already di�cult enough without additional embellishment.

• Input and Output (I/O) description. In this section, you will be given details
on how the input is formatted and on how you should format your output. This
part is usually written in a formal manner. A good problem should have clear input
constraints as the same problem might be solvable with di↵erent algorithms for di↵erent
input constraints (see Table 1.4).

• Sample Input and Sample Output. Problem authors usually only provide trivial
test cases to contestants, e.g., see Exercise 1.1.1. The sample input/output is in-
tended for contestants to check their basic understanding of the problem and to verify
if their code can parse the given input using the given input format and produce the
correct output using the given output format. Do not submit your code to the judge if
it does not even pass the given sample input/output. See Section 1.3.5 about testing
your code before submission.

• Hints or Footnotes. In some cases, the problem authors may drop hints or add
footnotes to further describe the problem.

1.4.2 Typical Input/Output Routines

Multiple Test Cases

In a programming contest, the correctness of your code is usually determined by running
your code against several test cases. Rather than using many individual test case files with
one test case per file, some programming contest problems31 use one test case file with
multiple test cases included. In this section, we use a very simple problem as an example of
a multiple-test-cases problem: Given two small positive integers ( 100) in one line, output
their sum in one line. We will illustrate three32 possible input/output formats:

1. The number of test cases is given in the first line of the input.

2. The multiple test cases are terminated by special values (usually zero(es)), regardless
whether there are subsequent inputs afterwards.

3. The multiple test cases are terminated by the EOF (end-of-file) signal.
31Kattis online judge [34] discourages this and prefers problem authors to specify one test case per file.
32Note that this list is not exhaustive!
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C/C++ Source Code | Sample Input | Sample Output
---------------------------------------------------------------------------
int TC; | 3 | 3
scanf("%d", &TC); // number of test cases | 1 2 | 12
while (TC--) { // shortcut to repeat until 0 | 5 7 | 9

int a, b; scanf("%d %d", &a, &b); | 6 3 |--------------
printf("%d\n", a+b); // compute on the fly |--------------|

} | |
---------------------------------------------------------------------------
int a, b; | 1 2 | 3
// stop when both integers are 0 | 5 7 | 12
while (scanf("%d %d", &a, &b), (a || b)) | 6 3 | 9

printf("%d\n", a+b); | 0 0 |--------------
// do not process this extra line -> | 1 1 |

---------------------------------------------------------------------------
int a, b; | 1 2 | 3
// scanf returns the number of items read | 5 7 | 12
while (scanf("%d %d", &a, &b) == 2) | 6 3 | 9
// or you can check for EOF, i.e., |--------------|--------------
// while (scanf("%d %d", &a, &b) != EOF) | |

printf("%d\n", a+b); | |

Case Numbers and Blank Lines

Some problems with multiple test cases require the output of each test case to be numbered
sequentially. Some also require a blank line after each test case. Let’s modify the simple
problem above to include the case number in the output (starting from one) with this output
format: “Case [NUMBER]: [ANSWER]” followed by a blank line for each test case. Assuming
that the input is terminated by the EOF signal, we can use the following code:

C/C++ Source Code | Sample Input | Sample Output
---------------------------------------------------------------------------
int a, b, c = 0; | 1 2 | Case 1: 3
while (scanf("%d %d", &a, &b) != EOF) | 5 7 |

// notice the two ‘\n’ | 6 3 | Case 2: 12
printf("Case %d: %d\n\n", ++c, a+b); |--------------|

| | Case 3: 9
| |
| |--------------

Some other problems require us to output blank lines only between test cases. If we use the
approach above, we will end up with an extra new line at the end of our output, producing
an unnecessary ‘Presentation Error’ (PE) verdict33. We should use the following code:

33Note that some online judges, e.g., Kattis, ignores this minor but annoying whitespace di↵erences.
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C/C++ Source Code | Sample Input | Sample Output
---------------------------------------------------------------------------
int a, b, c = 0; | 1 2 | Case 1: 3
while (scanf("%d %d", &a, &b) != EOF) { | 5 7 |

if (c > 0) printf("\n"); // 2nd/more cases | 6 3 | Case 2: 12
printf("Case %d: %d\n", ++c, a+b); |--------------|

} | | Case 3: 9
| |--------------

Variable Number of Inputs

Let’s change the simple problem above slightly. For each test case (each input line), we are
now given an integer k (k � 1), followed by k integers. Our task is now to output the sum
of these k integers. Assuming that the input is terminated by the EOF signal and we do not
require case numbering, we can use the following code:

C/C++ Source Code | Sample Input | Sample Output
---------------------------------------------------------------------------
int k; | 1 1 | 1
while (scanf("%d", &k) != EOF) { | 2 3 4 | 7

int ans = 0, v; | 3 8 1 1 | 10
while (k--) { scanf("%d", &v); ans += v; } | 4 7 2 9 3 | 21
printf("%d\n", ans); | 5 1 1 1 1 1 | 5

} |--------------|--------------

The input routine can be a little bit more problematic if we are not given the convenient
integer k at the beginning of each test case/line. To perform the same task, assuming k � 1
and two integers in the same line are separated by exactly one space, we now need to read
in pairs of an integer and a character and detect the end-of-line signal (EOLN), e.g.,:

C/C++ Source Code | Sample Input | Sample Output
---------------------------------------------------------------------------
while (1) { // keep looping | 1 | 1

int ans = 0, v; | 3 4 | 7
char dummy; | 8 1 1 | 10
while (scanf("%d%c", &v, &dummy) != EOF) { | 7 2 9 3 | 21

ans += v; | 1 1 1 1 1 | 5
if (dummy == ’\n’) break; // test EOLN |--------------|--------------

} | |
if (feof(stdin)) break; // test EOF | |
printf("%d\n", ans); | |

} | |

We have written all sample I/O code in various programming languages. Please take a look at
them at our public GitHub repository: https://github.com/stevenhalim/cpbook-code,
especially if C/C++ is not your default programming language.

Source code: ch1/IO.cpp|java|py|ml
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1.4.3 Time to Start the Journey

There is no better way to begin your journey in competitive programming than to solve a
few programming problems. To help you pick problems to start your journey among the ⇡
4965 problems in UVa online judge [44] and another ⇡ 2746 problems in Kattis online judge
[34], we have listed some of the easiest Ad Hoc problems below. The first five categories are
among the easiest programming contest problems that are suitable even for new (Computer
Science) students who have just started learning the basics of Programming Methodologies
but have some basic understanding of mathematics (e.g., simple algebraic manipulation,
simple modular arithmetic) and logic (e.g., and, or, not). If you are new to (competitive)
programming, we strongly recommend that you start your journey by solving some problems
from this category after completing the previous Section 1.4.2.

Since each category contains many problems which can still be overwhelming for begin-
ners, we have highlighted just one entry level (either a UVa or a Kattis online judge problem)
plus preferably three (3) must try * UVa online judge problems and three (3) must try *
Kattis online judge problems in each category. These are the problems that, we think, are
more interesting or are of higher quality and don’t have complicated I/O format. All other
problems in each category that we have solved are only listed as extras. The full list of hints
for the highlighted and the extras are available online at https://cpbook.net.

• I/O and/or Sequences Only
Most problems in this category have (near) one (or two) liner code.

• Repetition Only
All problems in this category only deal with repetition statements (for loop, range-
based for loop, while loop, or do-while loop).

• Selection Only
All problems in this category only deal with selection statements (if-else if-else or
switch-case statement).

• Repetition+Selection Only
These essentially selection-related problems are given in multiple test cases format, so
an outer loop (requires a repetition statement) is needed.

• Control Flow
Now we have I/O, Sequences, Selection, and Repetition commands mixed together.
All problems in this category can be solved without using 1D array.

• Function
The problems in this category has part(s) that can be abstracted into (user-defined)
function(s) (including recursive function(s)) that is/are called more than once.

• 1D Array Manipulation, Easier
The problems in this category are easier if we use 1-dimensional array data structure.

• Easy, Still Easy, and Medium
The problems in the next three categories are easy, still easy, medium level, and still
don’t have complicated34 I/O format. But from here onwards, the categorized problems
use a mix of basic programming methodology techniques listed above.

34After we discuss basic string processing techniques in Section 1.5, we will show much more Ad Hoc
problems in Section 1.6
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1.4.4 Getting Our First Accepted (AC) Verdict

In this subsection, we will guide you to get your first Accepted (AC) verdict for a simple
online judge problem. You can skip this subsection if have done this several times before.
We will use Kattis - moscowdream problem to illustrate the solving process step by step.

Take 1

After removing non important information, Kattis - moscowdream problem can be succinctly
described as follows: “Given 4 integers a, b, c, and n (0  a, b, c  10, 1  n  20), output
‘YES’ if a > 1, b > 1, c > 1, and a+ b+ c � n, or output ‘NO’ otherwise”.

Most contestants who are new with competitive programming will quickly write a C/C++
code like this and submit it to the judge.

#include <stdio.h>
int main() {

int a, b, c, n; scanf("%d %d %d %d", &a, &b, &c, &n);
if ((a >= 1) && (b >= 1) && (c >= 1) && (a+b+c >= n))

printf("YES\n");
else

printf("NO\n");
return 0;

}

Take 2

Unfortunately, submitting the code above will give us a Wrong Answer (WA) verdict. If
you participated in the actual contest, you would notice that many teams solved this simple
problem but a good number of those teams needed a second submission to get it right. This
implies that the problem author has likely put some corner cases that will caught some
contestants o↵-guard. So let’s try running our program above with a few random test cases
outside the given sample. It turns out entering 1 1 1 1 gives us a ‘YES’. At this point we
have to be aware that the required answer should be a ‘NO’ as when n == 1, it is impossible
to have at least 1 easy problem, at least 1 medium problem, and at least 1 hard problem. We
miss the case where 1  n < 3. Notice that the problem author cunningly wrote 1  n  20
as the input constraint of this variable n.

We call this kind of issue as “case analysis”, i.e., the problem has cases that can (or have
to) be treated separately. For this simple problem, debugging this bug is probably easy. For
harder problems, it may not be that easy to unveil all the possible corner cases.

#include <bits/stdc++.h> // a good practice in CP
using namespace std; // same as above
int main() {

int a, b, c, n; scanf("%d %d %d %d", &a, &b, &c, &n); // the bug fix
printf(((a >= 1) && (b >= 1) && (c >= 1) && (a+b+c >= n) && (n >= 3)) ?

"YES\n" : "NO\n"); // use ternary operator
return 0; // for shorter code

}

Source code: ch1/moscowdream.cpp|java|py|ml
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Programming Exercises to get you started35:

a. I/O + Sequences Only

1. Entry Level: Kattis - hello * (just print “Hello World!”)

2. UVa 10071 - Back to High School ... * (super simple: output 2⇥ v⇥ t)

3. UVa 11614 - Etruscan Warriors ... * (root of a quadratic equation)

4. UVa 13025 - Back to the Past * (giveaway, just print the one-line answer)

5. Kattis - carrots * (just print P)

6. Kattis - r2 * (just print 2⇥ S �R1)

7. Kattis - thelastproblem * (S can have space(s))

Extra UVa: 11805. 12478.

Extra Kattis: faktor, planina, romans.

b. Repetition Only

1. Entry Level: Kattis - timeloop * (just print ‘num Abracadabra’ N times)

2. UVa 01124 - Celebrity Jeopardy * (LA 2681 - SouthEasternEurope06;
just echo/re-print the input again)

3. UVa 11044 - Searching for Nessy * (one liner code/formula exists)

4. UVa 11547 - Automatic Answer * (a one liner O(1) solution exists)

5. Kattis - di↵erent * (use abs function per test case)

6. Kattis - qaly * (trivial loop)

7. Kattis - tarifa * (one pass; array not needed)

Extra UVa: 10055.

c. Selection Only

1. Entry Level: Kattis - moscowdream * (if-else; 2 cases; check n � 3)

2. Kattis - isithalloween * (if-else; 2 cases)

3. Kattis - judgingmoose * (if-else if-else; 3 cases)

4. Kattis - onechicken * (if-else if-else; 4 cases (piece vs pieces))

5. Kattis - provincesandgold * (if-else if-else; 6 cases)

6. Kattis - quadrant * (if-else if-else; 4 cases)

7. Kattis - temperature * (if-else if-else; 3 cases; derive formula)

d. Multiple Test Cases + Selection

1. Entry Level: Kattis - oddities * (2 cases)

2. UVa 11172 - Relational Operators * (very easy; one liner)

3. UVa 12250 - Language Detection * (LA 4995 - KualaLumpur10; if-else)

4. UVa 12372 - Packing for Holiday * (just check if all L,W,H  20)

5. Kattis - eligibility * (3 cases)

6. Kattis - helpaphd * (2 cases)

7. Kattis - leftbeehind * (4 cases)

Extra UVa: 00621, 11723, 11727, 12289, 12468, 12577, 12646, 12917.

Extra Kattis: nastyhacks, numberfun.

35You will need to create free accounts at UVa [44] and Kattis [34] online judges if you have not done so.
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e. Control Flow (solvable in under 7 minutes36)

1. Entry Level: Kattis - statistics * (one pass; array not needed)

2. UVa 11764 - Jumping Mario * (one linear scan to count high+low jumps)

3. UVa 11799 - Horror Dash * (one linear scan; find max value)

4. UVa 12279 - Emoogle Balance * (simple linear scan)

5. Kattis - fizzbuzz * (actually just about easy divisibility properties)

6. Kattis - licensetolaunch * (easy linear pass)

7. Kattis - oddgnome * (linear pass)

Extra UVa: 00272, 10300, 11364, 11498, 12403, 13012, 13034, 13130.

Extra Kattis: babybites, cold, earlywinter, jobexpenses, speedlimit, starar-
rangements, thanos, zanzibar.

f. Function

1. Entry Level: Kattis - mia * (just if-else check)

2. UVa 10424 - Love Calculator * (just do as asked)

3. UVa 11078 - Open Credit System * (one linear scan; max function)

4. UVa 11332 - Summing Digits * (simple recursion)

5. Kattis - artichoke * (LA 7150 - WorldFinals Marrakech15; linear scan; also
available at UVa 01709 - Amalgamated Artichokes)

6. Kattis - digits * (direct simulation; also available at UVa 11687 - Digits)

7. Kattis - filip * (create a ‘reverse string’ function; then if-else check)

Extra Kattis: abc, combinationlock, treasurehunt.

g. 1D Array Manipulation, Easier

1. Entry Level: Kattis - lostlineup * (simple 1D array manipulation)

2. UVa 01585 - Score * (LA 3354 - Seoul05; very easy one pass algorithm)

3. UVa 11679 - Sub-prime * (simulate; see if all banks have � 0 reserve)

4. UVa 12015 - Google is Feeling Lucky * (traverse the list twice)

5. Kattis - acm * (simple simulation; one pass; record #WA per problem)

6. Kattis - cetiri * (sort 3 number helps; 3 cases)

7. Kattis - lineup * (sort ascending/descending and compare)

Extra UVa: 11942.

Extra Kattis: basketballoneonone, hothike.

h. Easy

1. Entry Level: Kattis - hissingmicrophone * (simple loop)

2. UVa 12503 - Robot Instructions * (easy simulation)

3. UVa 12658 - Character Recognition? * (character recognition check)

4. UVa 12696 - Cabin Baggage * (LA 6608 - Phuket13; easy problem)

5. Kattis - batterup * (easy one loop)

6. Kattis - hangingout * (simple loop)

7. Kattis - pokerhand * (frequency count; report max)

Extra UVa: 01641, 10963, 12554, 12750, 12798.

Extra Kattis: armystrengtheasy, armystrengthhard, brokenswords, drinking-
song, mosquito, ptice, sevenwonders, volim, yinyangstones.

Others: IOI 2010 - Cluedo (3 pointers), IOI 2010 - Memory (2 linear pass).

36Seven minutes is just an arbitrary short amount of time chosen by the main author of this book (Steven).
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i. Still Easy

1. Entry Level: Kattis - bubbletea * (simple simulation)

2. UVa 11559 - Event Planning * (one linear pass)

3. UVa 11683 - Laser Sculpture * (one linear pass is enough)

4. UVa 11786 - Global Raining ... * (need to observe the pattern)

5. Kattis - bossbattle * (trick question)

6. Kattis - peasoup * (one linear pass)

7. Kattis - vote * (follow the requirements)

Extra UVa: 10114, 10141, 10324, 11586, 11661, 12614, 13007.

Extra Kattis: boundingrobots, climbingstairs, deathtaxes, driversdilemma,
eventplanning, exactlyelectrical, missingnumbers, prerequisites, sok.

j. Medium

1. Entry Level: Kattis - basicprogramming1 * (a nice summative problem for
programming examination of a basic programming methodology course)

2. UVa 11507 - Bender B. Rodriguez ... * (simulation; if-else)

3. UVa 12157 - Tari↵ Plan * (LA 4405 - KualaLumpur08; compute and
compare the two plans)

4. UVa 12643 - Tennis Rounds * (it has tricky test cases)

5. Kattis - battlesimulation * (one pass; special check on 3! = 6 possible com-
binations of 3 combo moves)

6. Kattis - bitsequalizer * (analyzing patterns; also available at UVa 12545 -
Bits Equalizer)

7. Kattis - fastfood * (eventually just one pass due to the constraints)

Extra UVa: 00119, 00573, 00661, 01237, 11956.

Extra Kattis: anotherbrick, beekeeper, bottledup, carousel, climbingworm,
codecleanups, cowcrane, howl, shatteredcake.

Others: IOI 2009 - Garage (simulation), IOI 2009 - POI (sort).

Tips: After solving a number of programming problems, you begin to realize a pattern
in your solutions. Certain idioms are used frequently enough in competitive program-
ming implementation for shortcuts to be useful.

From a C/C++ perspective, these idioms might include:

• Various libraries to be included (iostream, cstdio, cmath, cstring, etc, which
can now be all-included by using #include <bits/stdc++.h> if the program-
ming contest that you join uses GNU C++ compiler and allows it),

• Various data type shortcuts (ll, ii, vi, vii, etc),

• Various common constants (1e9 for INF, 1e-9 for EPS, etc),

• Various basic I/O routines (freopen, multiple input format, turning o↵ synchro-
nization with stdio for C++ users, etc).

A competitive programmer can choose to save his/her frequently used idioms in a
template file. Then when solving another problem, he/she can copy paste the entire
code from that template file into a new code to speed up the implementation time.

However, note that many of these tips should not be used beyond competitive pro-
gramming, especially in software engineering.
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1.5 Basic String Processing Skills

Now we introduce several basic string processing skills that every competitive programmer
must have as not all input and/or output format(s) of a programming contest problem involve
only integers and/or simple strings.

In this section, we give a series of mini tasks that you should solve one after another
without skipping. You can use any programming languages: C/C++37, Python38, Java,
and/or OCaml. Try your best to come up with the shortest, most e�cient implementation
that you can think of. Then, compare your implementations with ours (see the answers
at the back of this chapter or see the source code at https://github.com/stevenhalim/
cpbook-code). If you are not surprised with any of our implementations (or can even give
simpler implementations), then you are already in a good shape for tackling various string
processing problems. Go ahead and read the next sections. Otherwise, please spend some
time studying our implementations.

1. Given a text file that contains only alphabet characters [A-Za-z], digits [0-9], spaces,
and periods (‘.’), write a program to read this text file line by line until we encounter
a line that starts with seven periods (“.......”). Concatenate (combine) each line
into one long string T. When two lines are combined, give one space between them so
that the last word of the previous line is separated from the first word of the current
line. There can be up to 30 characters per line and no more than 10 lines for this input
block. There are no trailing spaces at the end of each line and each line ends with a
newline character. Note that the sample input is shown inside a box after question
1.(d) and before task 2.

(a) Do you know how to store a string in your favorite programming language?

(b) How to read a given text input line by line?

(c) How to concatenate (combine) two strings into a larger one?

(d) How to check if a line starts with a string “.......” to stop reading input?

I love CS3233 Competitive
Programming. i also love
AlGoRiThM
.......you must stop after reading this line as it starts with 7 dots
after the first input block, there will be one loooooooooooong line...

2. Suppose that we have one long string T. We want to check if another string P can
be found in T. Report all the indices where P appears in T or report -1 if P cannot
be found in T. For example, if T = “I love CS3233 Competitive Programming. i
also love AlGoRiThM” and P = “I”, then the output is only {0} (0-based indexing)
because uppercase ‘I’ and lowercase ‘i’ are considered di↵erent and thus the character
‘i’ at index {39} is not part of the output. If P = “love”, then the output is {2, 46}.
If P = “book”, then the output is {-1}.

37Note that you can mix C-style character array and C++ string class in the same C++ code. Most of
the time, either way can be used to solve a string processing problem. The choice of either style will be
down to the coder’s preference.

38Python is usually very suitable to solve easy/basic string processing problems. Therefore, we put Python
ahead of Java and OCaml this time.
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(a) How to find the first occurrence of a substring in a string (if any)?
Do we need to implement a string matching algorithm (e.g., Knuth-Morris-Pratt
algorithm discussed in Book 2, etc) or can we just use library functions?

(b) How to find the next occurrence(s) of a substring in a string (if any)?

3. Suppose we want to do some simple analysis of the characters in T and also to transform
each character in T into lowercase. The required analysis are: How many digits, vowels
[aeiouAEIOU], and consonants (other lowercase/UPPERCASE alphabet characters
that are not vowels) are there in T? Can you do all these in O(n) where n is the length
of the string T?

4. Next, we want to break this one long string T into tokens (substrings) and store them
into an array of strings called tokens. For this mini task, the delimiters of these tokens
are spaces and periods (thus breaking sentences into words). For example, if we tok-
enize the string T (in lowercase), we will have these tokens = {“i”, “love”, “cs3233”,
“competitive”, “programming”, “i”, “also”, “love”, “algorithm”}. Then, we want
to sort this array of strings lexicographically39 and then find the lexicographically small-
est string. That is, we have sorted tokens: {“algorithm”, “also”, “competitive”,
“cs3233”, “i”, “i”, “love”, “love”, “programming”}. Thus, the lexicographically
smallest string for this example is “algorithm”.

(a) How to tokenize a string?

(b) How to store the tokens (the shorter strings) in an array of strings?

(c) How to sort an array of strings lexicographically?

5. Now, identify which word appears the most in T. In order to answer this query, we
need to count the frequency of each word. For T, the output is either “i” or “love”,
as both appear twice. Which data structure should be used for this mini task?

6. The given text file has one more line after a line that starts with “.......” but the
length of this last line is not constrained. Your task is to count how many characters
there are in the last line. How to read a string if its length is not known in advance?

Tasks and Source code: ch1/basic string.html|cpp|java|py|ml

39Basically, this is a sorted order like the one used in our common dictionary.
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1.6 The Ad Hoc Problems

We will end this introduction chapter by discussing the first proper problem type in the IOIs
and ICPCs: the Ad Hoc problems. According to USACO [43], the Ad Hoc problems are
problems that ‘cannot be classified anywhere else’ since each problem description and its
corresponding solution are ‘unique’. Many Ad Hoc problems are easy (as shown in Section
1.4), but this does not apply to all Ad Hoc problems.

Ad Hoc problems frequently appear in programming contests. In ICPC, ⇡ 1-2 problems
out of every ⇡ 10-13 problems are Ad Hoc problems. If the Ad Hoc problem is easy, it
will usually be the first problem solved by the teams in a programming contest. However,
there are cases where solutions to the Ad Hoc problems are too complicated to implement,
causing some teams to strategically defer them to mid contest or to the last hour. In an
ICPC regional contest with about 60 teams, your team would rank in the lower half (rank
30-60) if you can only solve (easy) Ad Hoc problems.

In recent IOIs40, there are more and more creative Ad Hoc tasks that require creativity
[20]. Solving more Ad Hoc problems as practice may just widen your knowledge base that
may help you solve other Ad Hoc problems.

We have listedmany Ad Hoc problems that we have solved in the UVa and Kattis Online
Judges [44, 34] in the several categories below. We believe that you can solve most of these
problems without using the advanced data structures or algorithms that will be discussed
in the later chapters, i.e., we just need to read the requirements in the problem description
carefully and then code the usually short solution. Many of these Ad Hoc problems are
‘simple’ but some of them maybe ‘tricky’. Some Ad Hoc problems may require basic string
processing skills discussed in Section 1.5 earlier. Try to solve a few problems from each
category before reading the next chapter.

Note that a small number of problems, although eventually listed as part of Chapter 1,
may require knowledge from subsequent chapters, e.g., knowledge of linear data structures
(arrays) in Section 2.2, knowledge of backtracking in Section 3.2, etc. You can revisit these
harder Ad Hoc problems after you have understood the required concepts.

The categories:

• Game (Card)
There are lots of Ad Hoc problems involving popular games. Many are related to card
games. You will usually need to parse the input strings (review the discussion of basic
string processing in Section 1.5 if you are not familiar with this technique) as playing
cards have both suits (D/Diamond/}, C/Club/|, H/Heart/~, and S/Spades/�) and
ranks (usually: 2 < 3 < . . .< 9 < T/Ten < J/Jack < Q/Queen < K/King < A/Ace41).
It may be a good idea to map these troublesome strings to integer indices. For example,
one possible mapping is to map D2 ! 0, D3 ! 1, . . . , DA ! 12, C2 ! 13, C3 ! 14,
. . . , SA ! 51. Then, you can work with the integer indices instead.

40IOI now uses subtask system where the Subtask 1 of each task in each competition day is usually the
easiest form of the given task. If you are an IOI contestant, you will likely not win any medal if you can
only solve some/all Subtask 1 of all tasks over the 2 competition days.

41In some other arrangements, A/Ace < 2.
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• Game (Chess)
Chess is another popular game that sometimes appears in programming contest prob-
lems. Some of these problems are Ad Hoc and listed in this section. Some of them are
combinatorial, e.g., the task of counting how many ways there are to place 8-queens in
8⇥ 8 chess board. These are listed in Chapter 3 and some other chapters.

• Game (Others), easier and harder (or more tedious)
Other than card and chess games, many other popular games have made their way into
programming contests: Tic Tac Toe, Rock-Paper-Scissors, Snakes/Ladders, BINGO,
Bowling, etc. Knowing the details of these games may be helpful42, but most of the
game rules are given in the problem description to avoid disadvantaging contestants
who are unfamiliar with the games.

• Interesting Real Life Problems, easier and harder (or more tedious)
This is one of the most interesting problem categories in UVa and Kattis Online Judges.
We believe that real life problems like these are interesting to those who are new to
Computer Science. The fact that we write programs to solve real life problems can
be an additional motivational boost. Who knows, you might stand to gain new (and
interesting) information from the problem description!

• Ad Hoc problems involving Time
These problems utilize time concepts such as dates, times, and calendars. These are
also real life problems. As mentioned earlier, these problems can be a little more
interesting to solve. Some of these problems will be far easier to solve if you have
mastered43 the Python datetime module or Java GregorianCalendar class as they
have many library functions that deal with time. For example: With Python datetime
module we can + (add the date by a certain amount of time), - (find di↵erence of two
dates), format date as we wish, etc; With Java GregorianCalendar class, we can add,
get (component of a date), compareTo (another date), etc.

• Roman Numerals
Roman Numerals is a number system used in ancient Rome. It is actually a Decimal
number system but it uses a certain letters of the alphabet instead of digits [0..9]
(described below), it is not positional, and it does not have a symbol for zero. Roman
Numerals have these 7 basic letters and its corresponding Decimal values: I=1, V=5,
X=10, L=50, C=100, D=500, and M=1000. Roman Numerals also have the following
letter pairs: IV=4, IX=9, XL=40, XC=90, CD=400, CM=900. Programming prob-
lems involving Roman Numerals usually deal with the conversion from Arabic numerals
(the Decimal number system that we normally use everyday) to Roman Numerals and
vice versa. Such problems only appear very rarely in programming contests and such
conversion can be derived on the spot by reading the problem statement. If you are
interested to see our short solution, you can examine the given source code:

Source code: ch1/UVa11616.cpp|java|py

42Knowing the details of these games can sometimes be detrimental if the rules of the game are modified
from the standard one.

43C++ has <ctime> library too, but it has less functionalities than the Python/Java counterparts.
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• Cipher/Encode/Encrypt/Decode/Decrypt
It is everyone’s wish that their private digital communications are secure. That is,
their (string) messages can only be read by the intended recipient(s). Many ciphers
have been invented for this purpose and many (of the simpler ones – usually only
involve arrays and/or loops) end up as Ad Hoc programming contest problems, each
with their own encoding/decoding rules. There are many such problems in the UVa
[44] and Kattis [34] online judges. Thus, we have further split this category into three:
easier, medium, and harder ones (the harder ones are deferred until Book 2). Try
solving some of them, especially those that we classify as must try *. It is interesting
to learn a bit about Computer Security/Cryptography by solving these problems.

• Input Parsing (Iterative)
This group of problems is not for IOI contestants as the current IOI syllabus enforces
the input of IOI tasks to be formatted as simply as possible. However, there are no
such restrictions in the ICPC. Parsing problems range from the simpler ones that can
be dealt with an iterative parser to the more complex ones involving grammars that
require recursive descent parsers, C++ regexes, Java String/Pattern class, Python
RegEx classes, or OCaml regular expression (the more complex ones are deferred until
Book 2).

• Output Formatting
This is another group of problems that is also not for IOI contestants. This time, the
output is the problematic one. In an ICPC problem set, such problems are used as
‘coding warm up’ or the ‘time-waster problem’ for the contestants. Practice your coding
skills by solving these problems as fast as possible as such problems can di↵erentiate
the penalty time for each team (the more complex ones are deferred until Book 2).

• ‘Time Waster’ problems
These are Ad Hoc problems that are written specifically to make the required solution
long and tedious. These problems, if they do appear in a programming contest, would
determine the team with the most e�cient coder—someone who can implement com-
plicated but still accurate solutions under time constraints. Coaches should consider
adding such problems in their training programs.

• Ad Hoc problems in other chapters
There are many other Ad Hoc problems which we have shifted to other chapters since
they require (much more) knowledge above basic programming skills but it may be a
good idea to take a look at them after reading this Chapter 1.

– Ad Hoc problems involving the usage of basic linear data structures (especially
1D and multidimensional arrays) are listed in Section 2.2,

– Ad Hoc problems involving mathematical computation in Book 2,

– Ad Hoc problems involving harder string processing in Book 2,

– Ad Hoc problems involving basic geometry in Book 2,

– (Now) rare Ad Hoc problems, e.g., Tower of Hanoi, etc in Chapter 9.
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Programming Exercises about Ad Hoc problems:

a. Game (Card)

1. Entry Level: UVa 10646 - What is the Card? * (shu✏e cards with some
rules and then get a certain card)

2. UVa 10388 - Snap * (card simulation; uses random number to determine
moves; need data structure to maintain the face-up and face-down cards)

3. UVa 11678 - Card’s Exchange * (just an array manipulation problem)

4. UVa 12247 - Jollo * (interesting card game; simple, but requires good
logic to get all test cases correct)

5. Kattis - bela * (simple card scoring problem)

6. Kattis - shu✏ing * (simulate card shu✏ing operation)

7. Kattis - memorymatch * (interesting simulation game; many corner cases)

Extra UVa: 00162, 00462, 00555, 10205, 10315, 11225, 12366, 12952.

Extra Kattis: karte.

b. Game (Chess)

1. Entry Level: UVa 00278 - Chess * (basic chess knowledge is needed; derive
the closed form formulas)

2. UVa 00255 - Correct Move * (check the validity of chess moves)

3. UVa 00696 - How Many Knights * (ad hoc; chess)

4. UVa 10284 - Chessboard in FEN * (FEN = Forsyth-Edwards Notation
is a standard notation for describing board positions in a chess game)

5. Kattis - chess * (bishop movements; either impossible, 0, 1, or 2 ways - one
of this can be invalid; just use brute force)

6. Kattis - empleh * (the reverse problem of Kattis - helpme *)

7. Kattis - helpme * (convert the given chess board into chess notation)

Extra UVa: 10196, 10849, 11494.

Extra Kattis: bijele.

Also see N-Queens Problem (Section 3.2.2 and Book 2) and Knight Moves
(Section 4.4.2) for other chess related problems.

c. Game (Others), Easier

1. Entry Level: UVa 10189 - Minesweeper * (simulate the classic Minesweeper
game; similar to UVa 10279)

2. UVa 00489 - Hangman Judge * (just do as asked)

3. UVa 00947 - Master Mind Helper * (similar to UVa 00340)

4. UVa 11459 - Snakes and Ladders * (simulate it; similar to UVa 00647)

5. Kattis - connectthedots * (classic children game; output formatting)

6. Kattis - gamerank * (simulate the ranking update process)

7. Kattis - guessinggame * (use a 1D flag array; also available at UVa 10530 -
Guessing Game)

Extra UVa: 00340, 10279, 10409, 12239.

Extra Kattis: trik.
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d. Game (Others), Harder (more tedious)

1. Entry Level: Kattis - rockpaperscissors * (count wins and losses; output win
average; also available at UVa 10903 - Rock-Paper-Scissors ...)

2. UVa 00584 - Bowling * (simulation; games; reading comprehension)

3. UVa 10813 - Traditional BINGO * (follow the problem description)

4. UVa 11013 - Get Straight * (check permutations of 5 cards to determine
the best run; brute force the 6th card and replace one of your card with it)

5. Kattis - battleship * (simulation; reading comprehension; many corner cases)

6. Kattis - tictactoe2 * (check validity of Tic Tac Toe game; tricky; also available
at UVa 10363 - Tic Tac Toe)

7. Kattis - turtlemaster * (interesting board game to teach programming for
children; simulation)

Extra UVa: 00114, 00141, 00220, 00227, 00232, 00339, 00379, 00647.

Extra Kattis: rockscissorspaper.

e. Interesting Real Life Problems, Easier

1. Entry Level: Kattis - wertyu * (use 2D mapper array to simplify the problem;
also available at UVa 10082 - WERTYU)

2. UVa 00637 - Booklet Printing * (application in printer driver software)

3. UVa 01586 - Molar mass * (LA 3900 - Seoul07; basic Chemistry)

4. UVa 13151 - Rational Grading * (marking programming exam; ad hoc;
straightforward)

5. Kattis - chopin * (you can learn a bit of music with this problem)

6. Kattis - compass * (your typical smartphone’s compass function usually has
this small feature)

7. Kattis - trainpassengers * (create a verifier; be careful of corner cases)

Extra UVa: 00362, 11530, 11744, 11945, 11984, 12195, 12808.

Extra Kattis: calories, fbiuniversal, heartrate, measurement, parking, tran-
sitwoes.

f. Interesting Real Life Problems, Medium

1. Entry Level: Kattis - luhnchecksum * (very similar (⇡95%) to UVa 11743)

2. UVa 00161 - Tra�c Lights * (this is a typical situation on the road)

3. UVa 10528 - Major Scales * (music knowledge in problem description)

4. UVa 11736 - Debugging RAM * (this is a (simplified) introduction to
Computer Organization on how computer stores data in memory)

5. Kattis - beatspread * (be careful with boundary cases; also available at UVa
10812 - Beat the Spread)

6. Kattis - toilet * (simulation; be careful of corner cases)

7. Kattis - wordcloud * (just a simulation; but be careful of corner cases)

Extra UVa: 00187, 00447, 00457, 00857, 10191, 11743, 12555,

Extra Kattis: musicalscales, recipes, score.
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g. Interesting Real Life Problems, Harder (more tedious)

1. Entry Level: UVa 00706 - LC-Display * (like in old digital display)

2. UVa 01061 - Consanguine Calc... * (LA 3736 - WorldFinals Tokyo07;
try all eight possible blood + Rh types with the information given)

3. UVa 01091 - Barcodes * (LA 4786 - WorldFinals Harbin10; tedious sim-
ulation and reading comprehension)

4. UVa 11279 - Keyboard Comparison * (extension of UVa 11278 problem;
interesting to compare QWERTY and DVORAK keyboard layout)

5. Kattis - creditcard * (real life issue; precision error issue if we do not convert
double (with just 2 digits after decimal point) into long long)

6. Kattis - touchscreenkeyboard * (follow the requirements; sort)

7. Kattis - workout * (gym simulation; use 1D arrays to help you simulate the
time quickly)

Extra UVa: 00139, 00145, 00333, 00346, 00403, 00448, 00449, 00538, 10659,
11223, 12342, 12394.

Extra Kattis: bungeejumping, saxophone, tenis.

h. Time, Easier

1. Entry Level: Kattis - marswindow * (simple advancing of year and month
by 26 months or 2 years+2 months each; direct formula exists)

2. UVa 00579 - Clock Hands * (be careful with corner cases)

3. UVa 12136 - Schedule of a Marr... * (LA 4202 - Dhaka08; check time)

4. UVa 12148 - Electricity * (easy with GregorianCalendar; use ‘add’ method
to add 1 day to previous date; see if it is the same as the current date)

5. Kattis - friday * (the answer depends on the start day of the month)

6. Kattis - justaminute * (linear pass; total seconds/(total minutes*60))

7. Kattis - savingdaylight * (convert hh:mm to minute; compute di↵erence of
ending and starting; then convert minute to hh:mm again)

Extra UVa: 00893, 10683, 11219, 11356, 11650, 11677, 11958, 12019, 12531,
13275.

Extra Kattis: datum, spavanac.

i. Time, Harder

1. Entry Level: Kattis - timezones * (follow the description, tedious; also avail-
able at UVa 10371 - Time Zones)

2. UVa 10942 - Can of Beans * (try all 3! = 6 permutations of 3 integers
to form YY MM DD; check validity of the date; pick the earliest valid date)

3. UVa 11947 - Cancer or Scorpio * (relatively easy but tedious; use Java
GregorianCalendar)

4. UVa 12822 - Extraordinarily large LED * (convert hh:mm:ss to second
to simplify the problem; then this is just a tedious simulation problem)

5. Kattis - bestbefore * (tedious; 3! = 6 possibilities to check)

6. Kattis - birthdayboy * (convert mm-dd into [0..364]; use DAT; find largest
gap via brute force)

7. Kattis - natrij * (convert hh:mm:ss to seconds; make sure the second time is
larger than the first time; corner case: 24:00:00)

Extra UVa: 00150, 00158, 00170, 00300, 00602, 10070, 10339, 12439.

Extra Kattis: busyschedule, dst, semafori, tgif.
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j. Roman Numerals

1. Entry Level: UVa 00759 - The Return of the ... * (validation problem)

2. UVa 00185 - Roman Numerals * (also involving backtracking)

3. UVa 00344 - Roman Digititis * (count Roman chars used in [1..N])

4. UVa 11616 - Roman Numerals * (Roman numeral conversion problem)

5. UVa 12397 - Roman Numerals * (each Roman digit has a value)

6. Kattis - rimski * (to Roman/to Decimal conversion problem; use next per-
mutation to be sure)

7. Kattis - romanholidays * (generate and sort the first 1K Roman strings; “M”
is at index 945; append prefix ‘M’ for numbers larger than 1K)

k. Cipher/Encode/Encrypt/Decode/Decrypt, Easier

1. Entry Level: UVa 13145 - Wuymul Wixcha * (shift alphabet values by
+6 characters to read the problem statement; simple Caesar Cipher problem)

2. UVa 10851 - 2D Hieroglyphs ... * (ignore border; treat ‘\/’ as 1/0)
3. UVa 11278 - One-Handed Typist * (map QWERTY keys to DVORAK)

4. UVa 12896 - Mobile SMS * (simple cipher; use mapper)

5. Kattis - conundrum * (simple cipher)

6. Kattis - encodedmessage * (simple 2D grid cipher)

7. Kattis - t9spelling * (similar to (the reverse of) UVa 12896)

Extra UVa: 00444, 00641, 00795, 00865, 01339, 10019, 10222, 10878, 10896,
10921, 11220, 11541, 11946, 13107.

Extra Kattis: drmmessages, drunkvigenere, kemija08, keytocrypto, reverserot,
runlengthencodingrun.

l. Cipher/Encode/Encrypt/Decode/Decrypt, Medium

1. Entry Level: Kattis - secretmessage * (just do as asked; use 2D grid)

2. UVa 00245 - Uncompress * (LA 5184 - WorldFinals Nashville95)

3. UVa 00492 - Pig Latin * (ad hoc; similar to UVa 00483)

4. UVa 11787 - Numeral Hieroglyphs * (follow the description)

5. Kattis - anewalphabet * (simple cipher; 26 characters)

6. Kattis - piglatin * (simple; check the vowels that include ‘y’ and process it)

7. Kattis - tajna * (simple 2D grid cipher)

Extra UVa: 00483, 00632, 00739, 00740, 11716.

Extra Kattis: falsesecurity, permcode.

m. Input Parsing (Iterative)

1. Entry Level: UVa 11878 - Homework Checker * (expression parsing)

2. UVa 00397 - Equation Elation * (iteratively perform the next operation)

3. UVa 01200 - A DP Problem * (LA 2972 - Tehran03; tokenize input)

4. UVa 10906 - Strange Integration * (BNF parsing; iterative solution)

5. Kattis - autori * (simple string tokenizer problem)

6. Kattis - pervasiveheartmonitor * (simple parsing; then finding average)

7. Kattis - timebomb * (just a tedious input parsing problem; divisibility by 6)

Extra UVa: 00271, 00327, 00391, 00442, 00486, 00537, 11148, 12543, 13047,
13093.

Extra Kattis: genealogical, tripletexting.
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n. Output Formatting, Easier

1. Entry Level: UVa 00488 - Triangle Wave * (use several loops)

2. UVa 01605 - Building for UN * (LA 4044 - NortheasternEurope07; we
can answer this problem with just h = 2 levels)

3. UVa 10500 - Robot maps * (simulate; output formatting)

4. UVa 12364 - In Braille * (2D array check; check all possible digits [0..9])

5. Kattis - display * (unordered map; map a digit ! enlarged 7x5 version)

6. Kattis - musicalnotation * (simple but tedious)

7. Kattis - skener * (enlarging 2D character array)

Extra UVa: 00110, 00320, 00445, 00490, 10146, 10894, 11074, 11482, 11965,
13091.

Extra Kattis: krizaljka, mirror, multiplication, okvir, okviri.

o. Time Waster Problems, Easier

1. Entry Level: Kattis - asciiaddition * (a+b problem in text format; total
gimmick; time waster)

2. UVa 11638 - Temperature Monitoring * (simulation; needs to use bit-
mask for parameter C)

3. UVa 12085 - Mobile Casanova * (LA 2189 - Dhaka06; watch out for PE)

4. UVa 12608 - Garbage Collection * (simulation with several corner cases)

5. Kattis - glitchbot * (time waster; O(n2) simulation; do not output more than
one possible answer)

6. Kattis - pachydermpeanutpacking * (time waster; simple one loop simulation)

7. Kattis - printingcosts * (clear time waster; the hard part is in parsing the
costs of each character in the problem description)

Extra UVa: 00144, 00214, 00335, 00349, 00556, 10028, 10033, 10134, 10850,
12060, 12700.

Extra Kattis: averagespeed, gerrymandering.

p. Time Waster Problems, Harder

1. Entry Level: UVa 10188 - Automated Judge Script * (simulation)

2. UVa 00405 - Message Routing * (simulation)

3. UVa 11717 - Energy Saving Micro... * (tricky simulation)

4. UVa 12280 - A Digital Satire of ... * (a tedious problem)

5. Kattis - froggie * (just a simulation; but many corner cases; S can be 0)

6. Kattis - functionalfun * (just follow the description; 5 cases; tedious parsing
problem; requires a kind of mapper)

7. Kattis - windows * (LA 7162 - WorldFinals Marrakech15; tedious simulation
problem; also available at UVa 01721 - Window Manager)

Extra UVa: 00337, 00381, 00603, 00618, 00830, 00945, 10142, 10267, 10961,
11140.

Extra Kattis: interpreter, lumbercraft, sabor, touchdown.
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1.7 Solutions to Non-Starred Exercises

Exercise 1.1.1: A simple test case to break greedy algorithm is N = 2, {(2, 0), (2, 1), (0, 0),
(4, 0)}. A greedy algorithm will incorrectly pair {(2, 0), (2, 1)} and {(0, 0), (4, 0)} with a 5.00
cost while the optimal solution is to pair {(0, 0), (2, 0)} and {(2, 1), (4, 0)} with cost 4.24.

Exercise 1.1.2: For a Näıve Complete Search like the one outlined in the body text, one
needs up to 16C2⇥14C2⇥ . . .⇥2C2 =

16!
2!8 ⇡ 8⇥1010 for the largest test case with N = 8—far

too large. However, there are ways to prune the search space so that Complete Search can
still work. For an extra challenge, attempt Exercise 1.1.3*!

Exercise 1.3.2.1: Table 1.3 (minus UVa 10360) is shown below.

UVa/Kattis Title Problem Type Hint
wordcloud Word Cloud Ad Hoc Section 1.6
turbo Turbo Fenwick Tree; RSQ Section 2.4
hindex H-Index BSTA + binary search Section 3.3
11292 Dragon of Loowater Greedy (Non Classical) Section 3.4
11450 Wedding Shopping DP (Non Classical) Section 3.5
11512 GATTACA String (Su�x Array, LRS) Book 2
10065 Useless Tile Packers Geometry (CH + Area of Polygon) Book 2
11506 Angry Programmer Graph (Min Cut) Book 2
bilateral Bilateral Projects MVC; Bipartite; MCBM Book 2
carpool Carpool APSP; Complete Search; DP Book 2

Exercise 1.3.3.1: The answers are:

1. (b) Use a bBST as Priority Queue (for dynamic add/delete) (Section 2.3).

2. If list L is static, (a) Simple Array that is pre-processed with Dynamic Programming
(Section 2.2 & 3.5). If list L is dynamic, then (d) Fenwick Tree is a better answer
(easier to implement than (c) Segment Tree).

3. (b) Use 2D Range Sum Query (Section 3.5.2).

4. (b) See the solution at Section 3.2.3.

5. (a) O(V + E) Dynamic Programming (Section 3.5, 4.2.6, & 4.6.1).
However, (c) O((V + E) log V ) Dijkstra’s algorithm is also OK. The extra O(log V )
factor is ‘small’ for V  100K and it is hard to separate this extra log factor.

6. (a) Sieve of Eratosthenes (Book 2).

7. (b) The näıve approach above will not work. See Legendre’s formula at Book 2.

8. (b) The näıve approach is too slow. Use KMP/Su�x Array/Rabin-Karp (Book 2)!

9. (a) Yes, a complete search is possible (Section 3.2).

10. (b) No, we must find another way. First, find the Convex Hull of the N points in
O(N logN) (Book 2). Let the number of points in CH(S) = k. As the points are
randomly scattered, k will be much smaller than N . Then, find the two farthest points
by examining all pairs of points in the CH(S) in O(k2).
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11. (c) When the points may not be randomly scattered, k can be N , i.e., all points lie in
the Convex Hull. To solve this variant, we need the O(n) Rotating Caliper technique.

Exercise 1.3.4.1: The selected solutions are shown below and some alternative solutions
at https://github.com/stevenhalim/cpbook-code/tree/master/ch1/Ex_1.3.4.1:

import java.util.*; // Java code for task 1
class Main {

public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
double d = sc.nextDouble();
System.out.printf("%7.3f\n", d); // Java has printf too!

}
}

#include <bits/stdc++.h> // C++ code for task 2
using namespace std;
int main() {

int n; scanf("%d", &n);
printf("%.*lf\n", n, M_PI); // adjust field width

}

from datetime import date # Python code for task 3
s = date(2010, 8, 9) # CP1 launch date
t = date.today()
print(s.strftime("%a")) # ’Mon’, %A for ’Monday’
print("{} day(s) ago".format((t-s).days)) # ans grows over time

print(*sorted(set(input().split())), sep=’\n’) # Python code for task 4

#include <bits/stdc++.h> // C++ code for task 5
using namespace std;
typedef tuple<int, int, int> iii; // use natural order
int main() {

vector<iii> birthdays;
birthdays.emplace_back(5, 24, -1980); // reorder DD/MM/YYYY
birthdays.emplace_back(5, 24, -1982); // to MM, DD, and then
birthdays.emplace_back(11, 13, -1983); // use NEGATIVE YYYY
sort(birthdays.begin(), birthdays.end()); // that’s all :)
for (auto &[mm, dd, yyyy] : birthdays) // C++17 style

printf("%d %d %d\n", dd, mm, -yyyy);
}

#include <bits/stdc++.h> // C++ code for task 6
using namespace std;
int main() {

int n = 5, L[] = {10, 7, 5, 20, 8}, v = 7;
sort(L, L+n);
printf("%d\n", binary_search(L, L+n, v)); // should be index 1

}
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#include <bits/stdc++.h> // C++ code for task 7
using namespace std;
int main() {

int p[10], N = 10;
for (int i = 0; i < N; ++i) p[i] = i;
do {

for (int i = 0; i < N; ++i) printf("%c ", ’A’+p[i]);
printf("\n");

}
while (next_permutation(p, p+N));

}

#include <bits/stdc++.h> // C++ code for task 8
using namespace std;
#define LSOne(S) ((S) & -(S)) // notice the brackets
int main() {

int N = 20;
for (int i = 0; i < (1<<N); ++i) {

int pos = i;
while (pos) {

int ls = LSOne(pos);
pos -= ls;
printf("%d ", __builtin_ctz(ls)); // this idx is part of set

}
printf("\n");

}
}

import java.math.*; // Java code for task 9
class Main {

public static void main(String[] args) {
String str = "FF"; int X = 16, Y = 10;
System.out.println(new BigInteger(str, X).toString(Y));

}
}

class Main { // Java code for task 10
public static void main(String[] args) {

String S = "line: a70 and z72 will be replaced, aa24 and a872 won’t";
System.out.println(S.replaceAll("\\b+[a-z][0-9][0-9]\\b+", "***"));

}
}

import java.math.*; // Java code for task 11
class Main {

public static void main(String[] args) throws Exception {
BigInteger x = new BigInteger("48112959837082048697"); // Big Integer
System.out.println(x.isProbablePrime(10) ? "Prime" : "Composite");

}
}
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eval(input()) # Python code for task 12

Exercise 1.3.5.1: Situational considerations are in brackets:

1. You receive a WA verdict for a very easy problem. What should you do?

(a) Abandon this problem for another. (Not ok, your team will lose out.)

(b) Improve the performance of your solution. (Not useful.)

(c) Carefully re-read the problem description again. (Good idea.)

(d) Create tricky test cases to find the bug. (The most logical answer.)

(e) (In team contest): Ask your team mate to re-do the problem. (This could
be feasible as you might have had some wrong assumptions about the
problem. Thus, you should refrain from telling the details about the
problem to your team mate who will re-do the problem. Still, your
team will lose precious time.)

2. You receive a TLE verdict for your O(N3) solution.
However, the maximum N is just 100. What should you do?

(a) Abandon this problem for another. (Not ok, your team will lose out.)

(b) Improve the performance of your solution. (Not ok, we should not get TLE
with an O(N3) algorithm if N  400.)

(c) Create tricky test cases to find the bug. (This is the answer—maybe your
program runs into an accidental infinite loop in some test cases.)

3. Follow up to Question above: What if the maximum N is 100 000?
(If N > 400, you may have no choice but to improve the performance of the
current algorithm or use another faster algorithm. You should not submit
the code in the first place.)

4. Another follow up Question: What if the maximum N is 5000, the output only depends
on the size of input N , and you still have four hours of competition time left?
(If the output only depends on N , you may be able to pre-calculate all
possible solutions by running your O(N3) algorithm in the background for
a few minutes, letting your team mate use the computer first. Once your
O(N3) solution terminates, you have all the answers. Submit the O(1) answer
instead if it does not exceed ‘source code size limit’ imposed by the judge.)

5. You receive an RTE verdict. Your code (seems to) execute perfectly on your machine.
What should you do?
(The most common causes of RTEs are usually array sizes that are too
small or stack overflow/infinite recursion errors. Design test cases that can
trigger these errors in your code.)

6. Thirty minutes into the contest, you take a glance at the scoreboard. There are many
other teams that have solved a problem X that your team has not attempted. What
should you do?
(One team member should immediately attempt problem X as it may be
relatively easy. Such a situation is really a bad news for your team as it is
a major set-back to getting a good rank in the contest.)
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7. Midway through the contest, you take a glance at the scoreboard. The leading team
(assume that it is not your team) has just solved problem Y . What should you do?
(If your team is not the ‘pace-setter’, then it is a good idea to ‘ignore’ what
the leading team is doing and concentrate instead on solving the problems
that your team has identified to be ‘solvable’. By mid-contest, your team
must have read all the problems in the problem set and roughly identified
the problems that are (likely) solvable with your team’s current abilities.)

8. Your team has spent two hours on a nasty problem. You have submitted several im-
plementations by di↵erent team members. All submissions have been judged incorrect.
You have no idea what’s wrong. What should you do?
(It is time to give up solving this problem. Do not hog the computer, let
your teammate solve another problem. Either your team has really misun-
derstood the problem or in a very rare case, the judge solution is actually
wrong. In any case, this is not a good situation for your team.)

9. There is one hour to go before the end of the contest. You have 1 WA code and 1 fresh
idea for another problem. What should you (or your team) do?
(In chess terminology, this is called the ‘end game’ situation.)

(a) Abandon the problem with the WA code, switch to the other problem in an
attempt to solve one more problem.(OK in individual contests like IOI.)

(b) Insist that you have to debug the WA code. There is not enough time to start
working on a new problem. (If the idea for another problem involves com-
plex and tedious code, then deciding to focus on the WA code may be
a good idea rather than having two incomplete/‘non AC’ solutions.)

(c) (In ICPC): Print the WA code. Ask two other team members to scrutinize it while
you switch to that other problem in an attempt to solve two more problems.
(If the solution for the other problem can be coded in less than 30
minutes, then implement it while your team mates try to find the bug
for the WA code by studying the printed copy.)

Exercise 1.3.5.2:

1. #define LSOne(S) (S & -S) will cause a very hard to kill bug, e.g.,:
(7-5 & -7-5) = (2 & -12) = 0.
Use #define LSOne(S) ((S) & -(S)) instead and compute:
(7-5) & -(7-5) = 2 & -2 = 2.

2. builtin ctz(v) is for 32-bit int, use builtin ctzl(v) instead for 64-bit int.

3. Doing that will erase all copies of v, use ms.erase(ms.find(v)) instead.

4. Iterator is invalidated when the vector has to double its size and reallocate its contents.
Be careful of such potentially subtle iterator invalidation cases.

5. Similarly, be careful when using the pass by reference symbol & for such subtle bugs.
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C Solutions for Section 1.5

Exercise 1.5.1:

(a) A string is stored as an array of characters terminated by null, e.g., char str[30*10+50],
line[30+50];. It is a good practice to declare array size slightly bigger than requirement
to avoid “o↵ by one” bug.

(b) To read the input line by line, we use44 gets(line); or fgets(line, line length,
stdin); in string.h (or cstring) library.

(c) We first set str to be an empty string, and then we combine the lines that we read
into a longer string using strcat function. If the current line is not the last one, we
append a space to the back of str so that the last word from this line is not accidentally
combined with the first word of the next line.

(d) We stop reading the input when strncmp(line, ".......", 7) == 0. Note that
strncmp(str1, str2, num) only compares the first num characters.

Exercise 1.5.2:

(a) For finding a substring in a relatively short string (the standard string matching prob-
lem), we can just use library function. We can use p = strstr(str, substr);
The value of p will be NULL if substr is not found in str.

(b) If there are multiple copies of substr in str, we can use pos = strstr(str+pos,
substr). Initially pos = 0, i.e., we search from the first character of str. After finding
one occurrence of substr in str, we can call pos = strstr(str+pos, substr) again
where this time pos is the index of the current occurrence of substr in str plus one so
that we can get the next occurrence. We repeat this process until pos == NULL. This C
solution requires understanding of the memory address of a C array.

Exercise 1.5.3: In many string processing tasks, we are required to iterate through every
character in str once. If there are n characters in str, then such scan requires O(n). In both
C/C++, we can use tolower(ch) and toupper(ch) in ctype.h to convert a character to its
lower and uppercase version. There are also isalpha(ch)/isdigit(ch) to check whether
a given character is alphabet [A-Za-z]/digit, respectively. To test whether a character is a
vowel, one method is to prepare a string vowel = "aeiou"; and check if the given character
is one of the five characters in vowel. To check whether a character is a consonant, simply
check if it is an alphabet but not a vowel.

Exercise 1.5.4: Combined C and C++ solutions:

(a) To tokenize a string, we can either use strtok(str, delimiters); in C or stringstream
in C++.

(b) These tokens can then be stored in a C++ vector<string> tokens.

(c) We can use C++ STL sort(first, last) to sort vector<string> tokens. When
needed, we can convert C++ string back to C string by using str.c str().

Exercise 1.5.5: See the C++ solution.

Exercise 1.5.6: Read the input character by character and count incrementally, look for
the presence of ‘\n’ that signals the end of a line. Pre-allocating a fixed-sized bu↵er is not
a good idea as the problem author can set a ridiculously long string to break your code.

44Note: Function gets is actually unsafe because it does not perform bound checking on input size.
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C++ Solutions for Section 1.5

Exercise 1.5.1:

(a) We can use class string.

(b) We can use getline(cin, string name);

(c) We can use the ‘+’ operator directly to concatenate strings.

(d) We can use string name.rfind(".......", 0) == 0.

Exercise 1.5.2:

(a) We can use function find(str) in class string.

(b) Same idea as in C language. We can set the o↵set value in the second parameter of
function find(str, pos) in class string.

Exercise 1.5.3-4: Same solutions as in C language.

Exercise 1.5.5: We can use C++ STL unordered map<string, int> to keep track the
frequency of each word. Every time we encounter a new token (which is a string), we increase
the corresponding frequency of that token by one. Finally, we scan through all tokens and
determine the one with the highest frequency. This will be discussed in Section 2.3.

Exercise 1.5.6: Same solution as in C language or use the flexible length string class.

Python Solutions for Section 1.5

Exercise 1.5.1:

(a) Store the string in a Python variable.

(b) We can use input() method in Python to read one line.

(c) We can use the ‘+’ operator directly to concatenate strings.

(d) We can use the startswith(prefix) method in Python.

Exercise 1.5.2:

(a) We can use function find(sub) of a string.

(b) Same idea as in C language. We can set the o↵set value in the second parameter of
function find(sub, start) of a string.

Exercise 1.5.3: We can use lower() to convert a string to its lowercase version. In many
string processing tasks, we are required to iterate through every character in str once. If
there are n characters in str, then such scan requires O(n). We can use ternary operation in
Python 1 if (c in the digit) else 0 where the digit = list("0123456789"). Simi-
larly for counting number of alphabets and vowels.

Exercise 1.5.4:

(a) We can use split(separator)method, e.g., token = "quick brown fox".split(" ").
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(b) We can use list (see above).

(c) We can use tokens.sort().

Exercise 1.5.5: Same solution as in C++ language, but we use freq = defaultdict(int)
after we call from collections import defaultdict. This will be discussed in Section 2.3.

Exercise 1.5.6: It is not trivial to read input character by character in Python, so we will
just load all into memory via longline = input() (Python adjusts the bu↵er size by itself)
and report the length.

Java Solutions for Section 1.5

Exercise 1.5.1:

(a) We can use class String, StringBuffer, or StringBuilder (this one is faster than
StringBuffer).

(b) We can use the nextLine() method in Java Scanner. For faster I/O, we can consider
using the readLine() method in Java BufferedReader.

(c) We can use the append(str) method in StringBuilder. We should not concatenate
Java Strings with the ‘+’ operator as Java String class is immutable and thus such
operation is (very) costly.

(d) We can use the startsWith(str) method in Java String.

Exercise 1.5.2:

(a) We can use the indexOf(str) method in class String.

(b) Same idea as in C language. We can set the o↵set value in the second parameter of
indexOf(str, fromIndex) method in class String.

Exercise 1.5.3: Use Java StringBuilder and Character classes for these operations.

Exercise 1.5.4:

(a) We can use Java StringTokenizer class or split(regex) method in Java String class.

(b) We can use Java ArrayList of Strings.

(c) We can use Java Collections.sort.

Exercise 1.5.5: Same idea as in C++ language.
We can use Java HashMap<String, Integer>. This will be discussed in Section 2.3.

Exercise 1.5.6: We need to use the read() method in Java BufferedReader class.
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OCaml Solutions for Section 1.5

Exercise 1.5.1:

(a) We can use string.

(b) We can use read line() in the Stdlib module.

(c) We can use concat in String module.

(d) We can use regular expression test.

Exercise 1.5.2:

(a) We can use search forward in Str module.

(b) We can adjust the start parameter of search forward.

Exercise 1.5.3: We can use lowercase ascii to first convert the input string to lowercase.
Then, we can use to seq iterator to iterate the string and use an anonymous function so
that encountering a [‘0’ .. ‘9’] increases number of digits, encountering a [‘a’ .. ‘z’] that is
also a vowel (“aeiou”)/not increase the number of vowels/consonants, respectively.

Exercise 1.5.4:

(a) We can use split in Str module, specifying the required regular expression for a split.

(b) We can use List module.

(c) We can use sort in List module.

Exercise 1.5.5: We can use Hashtbl. This will be discussed in Section 2.3.

Exercise 1.5.6: We will just load all into memory via let longline = read line() in
(OCaml adjusts the bu↵er size by itself) and report the length.
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Figure 1.4: Some references that inspired the authors to write this book
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1.8 Chapter Notes

This chapter, as well as subsequent chapters are supported by many textbooks (see Figure
1.4 in the previous page) and Internet resources. Here are some additional references:

• To improve your typing skill as mentioned in Tip 1, you may want to play the many
typing games available online.

• Tip 2 is adapted from the introduction text in USACO training gateway [43].

• More details about Tip 3 can be found in many CS books, e.g., Chapter 1-5, 17 of [5].

• Online references for Tip 4:
https://en.cppreference.com/w/ for C++;
https://docs.oracle.com/en/java/javase/11/docs/api/index.html for Java;
https://docs.python.org/3/reference/ for Python;
http://caml.inria.fr/pub/docs/manual-ocaml/ for OCaml.
It is useful to memorize functions that you frequently use.

• For more insights on better testing (Tip 5), a slight detour to software engineering
books may be worth trying.

• There are many other Online Judges apart from those mentioned in Tip 6, e.g.,

– hackerearth, https://www.hackerearth.com/,

– HackerRank, https://www.hackerrank.com/,

– URI Online Judge, https://www.urionlinejudge.com.br/,

– Ural State University (Timus) Online Judge, https://acm.timus.ru,

– Peking University Online Judge, (POJ) http://poj.org,

– Zhejiang University Online Judge, (ZOJ) https://zoj.pintia.cn/home, etc.

• For a note regarding team contest (Tip 7), read [12].

In this chapter, we have introduced the world of competitive programming to you. However,
a competitive programmer must be able to solve more than just Ad Hoc problems in a
programming contest. We hope that you will enjoy the ride and fuel your enthusiasm by
reading up on and learning new concepts in the other chapters of this book. Once you have
finished reading the book, re-read it once more. On the second time, attempt and solve the
⇡ 258 written exercises and the ⇡ 3458 programming exercises.

Statistics 1st 2nd 3rd 4th
Number of Pages 13 19 32 51 (+59%)
Written Exercises 4 4 9 8+2*=10 (+11%)
Programming Exercises 34 160 173 431 (+149%)

The breakdown of the number of programming exercises from each section is shown below:

Section Title Appearance % in Chapter % in Book
1.4 Getting Started 155 ⇡ 36% ⇡ 4.5%
1.6 The Ad Hoc Problems 276 ⇡ 64% ⇡ 8.0%

Total 431 ⇡ 12.5%
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This page is intentionally left blank to keep the number of pages per chapter even.

52



Chapter 2

Data Structures and Libraries

If I have seen further it is only by standing on the shoulders of giants.
— Isaac Newton

2.1 Overview and Motivation

A data structure (DS) is a means of storing and organizing data. Di↵erent data structures
have di↵erent strengths and weaknesses. So when designing an algorithm, it is important
to pick one that allows for e�cient insertions, searches/queries, deletions, and/or updates,
depending on what your algorithm needs. Although a data structure does not in itself solve a
(programming contest) problem (the algorithm operating on it does), using an appropriately
e�cient data structure for a problem may be the di↵erence between passing or exceeding the
problem’s time limit. There can be many ways to organize the same data and sometimes one
way is better than the other in some contexts. We will illustrate this several times in this
chapter. A keen familiarity with the data structures and libraries discussed in this chapter
is important for understanding the algorithms that use them in subsequent chapters.

As stated in the preface of this book, we assume that you are familiar with the basic data
structures listed in Section 2.2-2.3 and thus we will not review them in depth in this book
(with exception of bitmask and Big Integer). Instead, we highlight the fact that there exist
built-in implementations for these elementary data structures in the C++ STL, Java API,
and Python/OCaml Standard Library. If you feel that you are not entirely familiar with any
of the terms or data structures mentioned in Section 2.2-2.3, please review those particular
terms and concepts in the various reference books1 that cover them, including classics such as
the “Introduction to Algorithms” [5], “Data Abstraction and Problem Solving” [3, 48], “Data
Structures and Algorithms” [9], etc. Continue reading this book only when you understand
at least the basic concepts behind these data structures.

Note that for competitive programming, you only need to know enough about these data
structures to be able to select and to use the correct data structures for each given contest
problem. You should understand the strengths, weaknesses, and time/space complexities
of typical data structures. The theory behind them is definitely good reading, but can
often be skipped or skimmed through, since the built-in libraries provide ready-to-use and
highly reliable implementations of otherwise complex data structures. This is not a good
practice, but you will find that it is often su�cient. Many (younger) contestants have been
able to utilize the e�cient C++ STL priority queue (Java PriorityQueue or Python
heapq) to order a queue of items without understanding that the underlying data structure

1Materials in Section 2.2-2.3 are usually covered in year one/two Data Structures CS curriculae. High
school students aspiring to take part in the IOI are encouraged to engage in independent study on them.
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is a (usually Binary) Heap; or use C++ STL unordered map/map (Java HashMap/TreeMap,
Python dict/no equivalent version in Python, or OCaml Hashtbl) implementations to store
dynamic collections of key-data pairs without an understanding that the underlying data
structure is a Hash Table/balanced Binary Search Tree, respectively.

This chapter is divided into three parts. Section 2.2 contains linear data structures and
the basic operations they support. The discussion of each data structure in Section 2.2 is
brief, with an emphasis on the important library routines that exist for manipulating the data
structures. However, two special data structures (bitmask and Big Integer) plus two special
topics on sorting and stack are discussed in more detail due to their important applications
in Competitive Programming world. Section 2.3 covers non-linear data structures such as
(Binary) Heaps, Hash Tables, (balanced) Binary Search Trees (BSTs), and Order Statistics
Tree, as well as their basic operations (using library routines) plus some extended operations
(that require some modifications). Section 2.4 contains more data structures for which there
exist no built-in implementations yet, and thus require us to build our own libraries. Section
2.4 has a more in-depth discussion than Section 2.2-2.3.

Value-Added Features of this Book

As this chapter is the first that dives into the heart of competitive programming, we will
now take the opportunity to highlight several value-added features of this book that you will
see in this and the following chapters.

A key feature of this book is its accompanying collection of e�cient, fully-implemented
examples2 in C/C++, Java, Python, and/or OCaml that many other Computer Science
books lack, stopping at the ‘pseudo-code level’ in their demonstration of data structures and
algorithms. This feature has been in the book since the very first edition (2010) and we
always strive to use the latest known implementation technique at the time of publication
of those data structures and algorithms. The important parts of the source code especially
for Section 2.4 have been included in the book and the full source code is available in the
public GitHub repository of this book: https://github.com/stevenhalim/cpbook-code.
The reference to each source file is indicated in the body text as a box like below.

Source code: chx/[optional subfolder/]filename.cpp|java|py|ml

Another strength of this book is the collection of both (hundreds) written and (thousands)
programming exercises (mostly supported by the (UVa) Online Judge [44] with uHunt inte-
gration and Kattis Online Judge [34]). We also have lots of written exercises, classified into
non-starred and starred ones. The non-starred written exercises are meant to be used mainly
for self-checking purposes; solutions are given at the back of each chapter. The starred writ-
ten exercises can be used for extra challenges; we do not provide solutions for these but may
instead provide some helpful hints.

Another important feature of this book is its close integration with our own VisuAlgo, a
web-based visualization and animation tool for many data structures and algorithms covered
in this book [24]. We believe that these visualizations will be a huge benefit to the visual
learners in our reader base. VisuAlgo is hosted at: https://visualgo.net. The reference
to each visualization is included in the body text as a box like the one shown below.

Visualization: https://visualgo.net/en/[name-of-the-module]

2We strive to provide working implementations in as many programming languages as possible. However,
some data structure or algorithm implementation is only applicable for certain languages. Our primary
programming language is C++. Note that as of year 2020, Python is slower than Java and (much) slower
than C++. Thus, we usually do not use Python to solve a (heavy) data structure problem.
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2.2 Linear DS with Built-in Libraries

A data structure is conceptually classified as a linear data structure if its elements form a
linear sequence, i.e., its elements are arranged from left to right (or top to bottom). Mastery
of these basic linear data structures below is critical in today’s programming contests. We
divide this section into six sub-sections.

2.2.1 Array

Static (Fixed-size) Array

Library:
Native support in C/C++ and Java.
No built-in support for static array in Python.
OCaml Array module (not resizeable).

This is the most commonly used data structure in programming contests. Whenever there
is a collection of homogenous sequential data to be stored and later accessed using their
indices, the static array is the most natural data structure to use. As the maximum input
size is usually mentioned in the problem statement, the array size can be declared to be the
maximum input size, with a small extra bu↵er (sentinel) for safety—to avoid the unnecessary
‘o↵ by one’ RTE.

Typically, 1D and 2D arrays are used in programming contests (3D or higher dimensional
arrays are rare). Typical 1D array operations that will be discussed in more details soon
include accessing elements by their indices, sorting elements, performing a linear scan on the
array, or performing a binary search on a sorted array. Some interesting 2D array operations
include rotating, transposing, or mirroring the 2D array.

Dynamic (Resizeable) Array

Library:
C++ STL vector.
Java ArrayList (preferred in Competitive Programming, as it is faster) or Vector.
Python list/array3.

This data structure is similar to the static array, except that it is designed to handle runtime
resizing natively4. It is better to use a vector in place of an array if the size of the sequence
of items is unknown at compile-time.

Usually, we initialize the size (using custom constructor, reserve(), or resize()) with
the estimated (or maximum) size of the collection for better performance (to minimize dou-
bling). Typical C++ STL vector operations used in competitive programming include
push back(), at(), the [] operator, assign(), clear(), erase(), and iterators for
traversing the contents of vectors. You can also directly do lexicographical comparison
of the values in two vectors using the ==, !=, <, <=, >, and >= operators if the underlying
data type has built-in comparison function (e.g., int, double, string, etc).

In the sample code at our public GitHub repository: https://github.com/stevenhalim/
cpbook-code, we demonstrate a few of these resizeable array operations.

Source code: ch2/lineards/resizeable array.cpp|java|py

3Python array is not really needed as Python list is simpler to use.
4The usual C++ vector implementation when it is full is to double its size and copy the content from

the old and full vector into a new, twice larger, vector. This retains O(1) amortized time complexity for
crucial vector operations, i.e., push back and [].
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Sorting

It is appropriate to discuss two operations commonly performed on arrays: Sorting and
Searching. These two operations are well supported in C/C++, Java, and Python.

There are many sorting algorithms mentioned in CS books [5, 3, 48, 9, 38, 51], e.g.,

1. O(n2) comparison-based sorting algorithms: Bubble/Selection/Insertion Sort, etc.
These algorithms are (awfully) slow and usually avoided in programming contests,
though understanding them might help you solve a few specific problems, e.g., Insertion
Sort actually runs in O(n) when the input array is almost sorted.

2. O(n log n) comparison-based sorting algorithms: Merge/Quick5/Heap Sort, etc.
These algorithms are the default choice in programming contests as an O(n log n) com-
plexity is optimal for comparison-based sorting. Therefore, these sorting algorithms
run in the ‘best possible’ time in most cases (see below for special purpose sorting
algorithms). In addition, these algorithms are well-known and hence we do not need
to ‘reinvent the wheel’6—we can simply use sort, stable sort, or partial sort
in C++ STL algorithm (Java Collections.sort; Python sorted(list name) or
list name.sort(); OCaml List.sort compare list name) for basic sorting tasks.
We only need to specify the required comparison function (which can be a lambda
expression) and these e�cient sorting library routines will handle the rest.

A simple sorting exercise using C++ STL sort library is shown below. In this exercise,
we are given a vector<int> A that contains n integers in random order. Our task is
to sort A in decreasing (to be precise, in non-increasing if there are duplicates) order.

// technique 1, create a custom comparison function
bool cmp(const int a, const int b) {

return a > b;
}

// inside int main()
sort(A.begin(), A.end(), cmp);

// technique 2, use an anonymous function (lambda expression)
sort(A.begin(), A.end(), [](const int a, const int b) {

return a > b;
});

// technique 3, use reverse iterator
sort(A.rbegin(), A.rend());

3. Special purpose sorting algorithms: O(n) Counting/Radix/Bucket Sort, etc.
Although rarely used, these special purpose algorithms are good to know as they can
reduce the required sorting time if the data has certain special characteristics, e.g.,
Counting Sort and Radix Sort (see Section 2.2.2).

5We refer to the randomized version of Quick Sort that has O(n log n) time complexity in expectation.
6But sometimes we do need to ‘reinvent the wheel’, e.g., the Inversion Index problem in Section 2.2.2.
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If you are interested to explore more details about various sorting algorithms, please visit
VisuAlgo, Sorting visualization, select the sorting algorithm to be visualized, enter your own
set of (small, not necessarily distinct) integers (in any order), and view the animation of the
sorting algorithm steps. You can see a static snapshot of this visualization at Figure 2.1.
For the animation of the sorting visualization, please go to this URL:

Visualization: https://visualgo.net/en/sorting

Figure 2.1: Sorting Visualization, Example of First Partition of Quick Sort

Searching

There are generally three common methods to search for an item in an array:

1. O(n) Linear Search: Consider every item from index 0 to index n-1 (try to avoid this).

2. O(log n) Binary Search: Use lower bound, upper bound, or binary search in C++
STL algorithm (Java Collections.binarySearch or Python bisect). If the input
array is unsorted, it is necessary to sort the array at least once (using one of the
O(n log n) sorting algorithms above) before executing one/many Binary Search(es).

3. O(1) with Hashing: This is a useful technique to use when fast access to known values
is required but the ordering of the values is not important. A few time critical problems
may need this O(1) hashing performance. We will discuss hashing/hash table in more
details in Section 2.3 and in Book 2.

In the sample code, we demonstrate a few of these classic algorithms on array.

Source code: ch2/lineards/array algorithms.cpp|java|py

Array of Booleans

Library:
C++ STL bitset.
Java BitSet.

If our array needs only to contain Boolean values (1/true and 0/false), we can use an alterna-
tive data structure other than a plain array—a C++ STL bitset (Java BitSet). This C++
STL bitset supports useful operations like reset(), set(), the [] operator and test().

However if our array of Booleans is small (not more than 62 Booleans), it is beneficial to
use bitmask data structure that is discussed in Section 2.2.3.
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Exercise 2.2.1.1*: Sort the following array of N elements. Use built-in library if possible.

1. N tuples (integer age ", string last name # (descending order), string first name ").

2*. N fractions ( numerator
denominator ) in " (ascending order).

Exercise 2.2.1.2*: The partition algorithm of Quick Sort visualized in Figure 2.1 seems to
put elements that are < p on the left side and elements that are � p on the right side. Notice
that elements that are equal to p are always put on the right side in that implementation.
Provide a test case such that a Quick Sort algorithm that uses such a partition algorithm to
run in O(n2) time, even with pivot randomization! Then, suggest a quick fix!

Exercise 2.2.1.3*: Suppose you are given an unsorted array S of n 32-bit signed integers.
Solve each of the following tasks below with the best possible algorithms that you can think of
and analyze their time complexities. Let’s assume the following constraints: 1  n  100K
so that O(n2) solutions are theoretically infeasible in a contest environment.

1. Determine if S contains one or more pairs of duplicate integers.

2*. Given an integer v, find two integers a, b 2 S such that a+ b = v.

3*. Follow-up to Question 2: What if the given array S is already sorted?

4*. Print the integers in S that fall between a range [a..b] (inclusive) in sorted order.

5*. Determine the length of the longest increasing contiguous sub-array in S.

6. Determine the median (50th percentile) of S. Assume that n is odd.

7*. Find the item that appears > n/2 times in the array.

Exercise 2.2.1.4*: Suppose you are given a 2D square integer array A of size n⇥ n. Solve
each of the following tasks below with the best possible algorithms that you can think of
and analyze their time complexities. Let’s assume the following constraints: 1  n  10K
so that O(n2) solutions are feasible.

1*. Rotate the 2D array 90 degrees (counter)clockwise.

2*. Transpose the 2D array (switch rows and columns).

3*. Mirror the 2D array along a certain x- (or y-) axis.
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2.2.2 Special Sorting Problems

a. Inversion Index

Inversion index problem is defined as follows: Given a list of numbers, count the minimum
number of ‘bubble sort’ swaps (swap between pair of consecutive items) that are needed to
make the list sorted in (usually ascending) order.

For example, if the content of the list is {3, 2, 1, 4}, we need 3 ‘bubble sort’ swaps to
make this list sorted in ascending order, i.e., swap (3, 2) to get {2, 3, 1, 4}, swap (3, 1) to
get {2, 1, 3, 4}, and finally swap (2, 1) to get {1, 2, 3, 4}.

O(n2) solution

The most obvious solution is to count how many swaps are needed during the actual running
of the O(n2) bubble sort algorithm, but this is clearly too slow.

O(n log n) solution

One better O(n log n) Divide and Conquer solution for this inversion index problem is to
modify merge sort. During the merge process of merge sort, if the front of the right (sorted)
sublist is taken first rather than the front of the left (sorted) sublist, we say that ‘inversion
occurs’ and add inversion index counter by the size of the current left sublist (as all of the
current left sublist have to be swapped with the front of the right sublist). When merge sort
is completed, we report the value of this counter. As we only add O(1) steps to merge sort,
this solution has the same time complexity as merge sort, i.e., O(n log n).

On the example above, we first have: {3, 2, 1, 4}. Merge sort will split this into sublist
{3, 2} and {1, 4}. The left sublist will cause one inversion as we have to swap 3 and 2 to
get {2, 3}. The right sublist {1, 4} will not cause any inversion as it is already sorted. Now,
we merge {2, 3} with {1, 4}. The first number to be taken is 1 from the front of the right
sublist. We have two more inversions because the left sublist has two members: {2, 3} that
both have to be swapped with 1 (see Figure 2.2). There is no more inversion after this.
Therefore, there are a total of 3 inversions for this example.

Figure 2.2: Sorting Visualization, Example of the Merge Operation of Merge Sort
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b. Sorting in Linear Time

Given an (unsorted) array of n elements, can we sort them in O(n) time?

Theoretical Limit

In general case, the lower bound of comparison-based sorting algorithm is ⌦(n log n) (see the
proof using decision tree model in other references, e.g., [5]). However, if there is a special
property about the n elements, we can have a faster, linear, O(n) sorting algorithm by not
doing comparison between elements. We will see two examples below.

Solution(s)

O(n+ k) Counting Sort

If the array A contains n integers with small range [L..R] (e.g., ‘human age’ of [1..99]
years in UVa 11462 - Age Sort), we can use the Counting Sort algorithm. For the explanation
below, assume that array A is {2a, 5, 2b, 2c, 3a, 3b}. The a/b/c subscript is to highlight stable
sorting feature of Counting Sort that will be needed in the next subsection. The idea of
Counting Sort is as follows:

1. Prepare a ‘frequency array’ f with size k = R-L+1 and initialize f with zeroes.

On the example array above, we have L = 2, R = 5, and k = 4.

2. We do one pass through array A and update the frequency of each integer that we see,
i.e., 8i 2 [0..n-1], we do ++f[A[i]-L].

On the example array above, we have f[0] = 3, f[1] = 2, f[2] = 0, f[3] = 1.
Remember: f[i] refers to the frequency of integer L+i; not the frequency of integer i.

3. Once we know the frequency of each integers in that small range,
we compute the prefix sums of each i, i.e., f[i] = f[i-1] + f[i] 8i 2 [1..k-1].
Now, f[i] contains the number of elements less than or equal to i.

On the example array above, we have f[0] = 3, f[1] = 5, f[2] = 5, f[3] = 6.

4. Next, go backwards from i = n-1 down to i = 0.
We place A[i] at index f[A[i]-L]-1 as it is the correct location for A[i].
We decrement f[A[i]-L] by one so that the next copy of A[i]—if any—will be placed
right before the current A[i].

On the example array above, we first put A[5] = 3b in index f[A[5]-2]-1 = f[1]-1
= 5-1 = 4 and decrement f[1] to 4.
Next, we put A[4] = 3a—the same value as A[5] = 3b but comes earlier in the input—
now in index f[A[4]-2]-1 = f[1]-1 = 4-1 = 3 and decrement f[1] to 3.
Then, we put A[3] = 2c in index f[A[3]-2]-1 = 2 and decrement f[0] to 2.
We repeat the next three steps until we obtain a sorted array: {2a, 2b, 2c, 3a, 3b, 5}.
If implemented correctly, Counting Sort is a stable sorting algorithm.

The time complexity of Counting Sort is O(n+k). When k = O(n), this algorithm theoreti-
cally runs in linear time by not doing comparison of the integers. However, in programming
contest environment, usually k cannot be too large in order to avoid Memory Limit Ex-
ceeded. For example, Counting Sort will have problem sorting this array A with n = 3 that
contains {1, 1 000 000 000, 2} as it has large k.
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O(d⇥ (n+ k)) Radix Sort

If the array A contains n non-negative integers with relatively wide range [L..R] but it has
a relatively small number of digits, we can use the Radix Sort algorithm.

The idea of Radix Sort is simple. First, we make all integers have d digits—where d is the
largest number of digits in the largest integer in A—by appending zeroes if necessary. Then,
Radix Sort will sort these integers digit by digit, starting with the least significant digit to
the most significant digit. To correctly sort n integers digit by digit, Radix Sort must use a
stable sort algorithm as a sub-routine to sort the digits, such as the O(n+ k) Counting Sort
shown above. For example:

Input | Append | Sort by the | Sort by the | Sort by the | Sort by the
d = 4 | Zeroes | fourth digit | third digit | second digit | first digit
323 | 0323 | 032(2) | 00(1)3 | 0(0)13 | (0)013

1257 | 1257 | 032(3) | 03(2)2 | 1(2)57 | (0)322
13 | 0013 | 001(3) | 03(2)3 | 0(3)22 | (0)323

322 | 0322 | 125(7) | 12(5)7 | 0(3)23 | (1)257

For an array of n d-digits integers, we will do an O(d) passes of Counting Sorts which
have time complexity of O(n + k) each. Therefore, the time complexity of Radix Sort is
O(d ⇥ (n + k)). If we use Radix Sort for sorting n 32-bit signed integers (⇡ d = 10 digits)
and k = 10, this Radix Sort algorithm runs in O(10 ⇥ (n + 10)). It can still be considered
as running in linear time but it has high constant factor.

Considering the hassle of writing the complex Radix Sort routine compared to calling the
standard O(n log n) C++ STL sort (Java Collections.sort, Python list name.sort(),
or OCaml List.sort compare list name), this Radix Sort algorithm is rarely used in
programming contests. So far, we only use this Radix + Counting Sort combo in our Su�x
Array implementation (see Book 2).

Exercise 2.2.2.1*: In Section 2.4.3, we discuss the Fenwick Tree data structure. The
Inversion Index problem mentioned in this section can also be solved in O(n log n) using
Fenwick Tree. Show how to do it!

Exercise 2.2.2.2*: What should we do if we want to use Radix Sort but the array A contains
(at least one) negative number(s)?

Exercise 2.2.2.3*: In the discussion above, we show Radix Sort using radix (base) 10 (digit
by digit). Actually, we can use di↵erent (larger) radix (base) to minimize O(d ⇥ (n + k)).
What is the appropriate radix (base) to solve Kattis - magicsequence?
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2.2.3 Bitmask

Library: Native support in C/C++, Java, and Python.

Bitmasks a.k.a. lightweight, small sets of Booleans has native support in most programming
languages. An integer is stored in computer memory as a sequence/string of bits. Thus, we
can use integers to represent a lightweight small set of Boolean values. All set operations
then involve only the bitwise manipulation of the corresponding integer, which makes it a
much more e�cient choice when compared with the C++ STL vector<bool>, bitset,
or set<int> options, especially when used as a parameter of a recursive (or Dynamic
Programming) algorithm (see Book 2). Such speed is important in competitive programming.
Some important bitmask operations are shown below. All are O(1) operations.

1. Representation: A 32 (or 64)-bit signed integer for up to 32 (or 64) items7. Without
loss of generality, all examples below use a 32-bit signed integer called S.

Example: 5| 4| 3| 2| 1| 0 <- 0-based indexing from right
32|16| 8| 4| 2| 1 <- power of 2

S = 34 (base 10) = 1| 0| 0| 0| 1| 0 (base 2)
F| E| D| C| B| A <- alternative alphabet label

In the example above, the integer S = 34 or 100010 in binary also represents a small
set {1, 5} with a 0-based indexing scheme in increasing digit significance (or {B, F}
using the alternative alphabet label) because the second and the sixth bits (counting
from the right) of S are on.

2. To multiply/divide an integer by 2, we only need to shift all8 bits in the integer
left/right, respectively. This operation (especially the shift left operation) is important
for the next few examples below. Notice that the truncation in the shift right operation
automatically rounds the division-by-2 down, e.g., 17/2 = 8.

S = 34 (base 10) = 100010 (base 2)
S = S<<1 = S*2 = 68 (base 10) = 1000100 (base 2)
S = S>>2 = S/4 = 17 (base 10) = 10001 (base 2)
S = S>>1 = S/2 = 8 (base 10) = 1000 (base 2) <- LSB is gone

(LSB = Least Significant Bit)

3. To set/turn on the j-th item (0-based indexing) of the set,
use the bitwise OR operation S |= (1<<j).

S = 34 (base 10) = 100010 (base 2)
j = 3, 1<<j = 001000 <- bit ‘1’ is shifted to the left 3 times

-------- OR (true if either of the bits is true)
S = 42 (base 10) = 101010 (base 2) // update S to this new value 42

7To avoid issues with the two’s complement representation, use a 32-bit/64-bit signed integer to represent
bitmasks of up to 30/62 items only, respectively.

8Most CPUs can do this bit shifting operation in O(1), much faster than O(k) where k is the number of
bits in the integer.
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Figure 2.3: Bitmask Visualization, Example of CheckBit(j) Operation

4. To check if the j-th item of the set is on,
use the bitwise AND operation T = S & (1<<j).
If T = 0, then the j-th item of the set is o↵.
If T != 0 (to be precise, T = (1<<j)), then the j-th item of the set is on.
See Figure 2.3 for one such example.

S = 42 (base 10) = 101010 (base 2)
j = 3, 1<<j = 001000 <- bit ‘1’ is shifted to the left 3 times

-------- AND (only true if both bits are true)
T = 8 (base 10) = 001000 (base 2) -> not zero, the 3rd item is on

S = 42 (base 10) = 101010 (base 2)
j = 2, 1<<j = 000100 <- bit ‘1’ is shifted to the left 2 times

-------- AND
T = 0 (base 10) = 000000 (base 2) -> zero, the 2nd item is off

5. To clear/turn o↵ the j-th item of the set,
use9 the bitwise AND operation S &= ⇠(1<<j).

S = 42 (base 10) = 101010 (base 2)
j = 1, ~(1<<j) = 111101 <- ‘~’ is the bitwise NOT operation

-------- AND
S = 40 (base 10) = 101000 (base 2) // update S to this new value 40

6. To toggle (flip the status of) the j-th item of the set,
use the bitwise XOR operation S ^= (1<<j).

S = 40 (base 10) = 101000 (base 2)
j = 2, (1<<j) = 000100 <- bit ‘1’ is shifted to the left 2 times

-------- XOR <- true if both bits are different
S = 44 (base 10) = 101100 (base 2) // update S to this new value 44

S = 40 (base 10) = 101000 (base 2)
j = 3, (1<<j) = 001000 <- bit ‘1’ is shifted to the left 3 times

-------- XOR <- true if both bits are different
S = 32 (base 10) = 100000 (base 2) // update S to this new value 32

9Use parentheses when doing bit manipulation to avoid accidental bugs due to operator precedence.
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7. To get the value of the least significant bit of S that is on (first from the right),
use T = ((S) & -(S)). This operation is abbreviated as LSOne(S)10.

S = 40 (base 10) = 000...000101000 (32 bits, base 2)
-S = -40 (base 10) = 111...111011000 (two’s complement)

----------------- AND
T = 8 (base 10) = 000...000001000 (3rd bit from right is on)

Notice that T = LSOne(S) is a power of 2, i.e., 2j.
To get the actual index j (from the right), we can use builtin ctz(T) below.

8. To turn on all bits in a set of size n, use S = (1<<n) - 1

Example for n = 3
S+1 = 8 (base 10) = 1000 <- bit ‘1’ is shifted to left 3 times

1
------ -

S = 7 (base 10) = 111 (base 2)

9. To enumerate all proper subsets of a given a bitmask, e.g., if mask = (18)10 = (10010)2,
then its proper subsets are {(18)10 = (10010)2, (16)10 = (10000)2, (2)10 = (00010)2},
we can use:

int mask = 18;
for (int subset = mask; subset; subset = (mask & (subset-1)))

cout << subset << "\n";

10. Finally, we highlight two important GNU C++ compiler11 built-in bit manipulation
functions12: builtin popcount(S) to count how many bits that are on in S and
builtin ctz(S) to count how many trailing zeroes in S.

__builtin_popcount(32) // 100000 (base 2), only 1 bit is on
__builtin_popcount(30) // 11110 (base 2), 4 bits are on
__builtin_popcountl((1l<<62)-1l) // 2^62-1 has 62 bits on (near limit)
__builtin_ctz(32) // 100000 (base 2), 5 trailing zeroes
__builtin_ctz(30) // 11110 (base 2), 1 trailing zero
__builtin_ctzl(1l<<62) // 2^62 has 62 trailing zeroes

Please visit VisuAlgo, Bitmask visualization, to enter your own (small) integer (in Decimal),
see the corresponding binary representation of that integer, and perform various bit ma-
nipulation operations on them. We also demonstrate these bit manipulation operations in
our sample code below. Many bit manipulation operations are written as (slightly faster)
preprocessor macros in our C/C++ example source code (but written as normal functions
in our Java/Python/OCaml example code).

Visualization: https://visualgo.net/en/bitmask

Source code: ch2/lineards/bit manipulation.cpp|java|py|ml

10This LSOne(S) operation is quite versatile and is used several times in this book.
11Java has Integer class that has these functionalities too, e.g., bitCount, numberOfTrailingZeros.
12Notice the di↵erence between the 32-bit and the 64-bit versions.
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Exercise 2.2.3.1: There are several other ‘cool’ techniques possible with bit manipulation
techniques but these are rarely used. Please implement these tasks with bit manipulation:

1. Obtain the remainder (modulo) of S when it is divided by N (N is a power of 2)
e.g., S = (7)10 % (4)10 = (111)2 % (100)2 = (11)2 = (3)10.

2. Determine if S is a power of 2.
e.g., S = (7)10 = (111)2 is not a power of 2, but (8)10 = (1000)2 is a power of 2.

3. Turn o↵ the last one in S, e.g., S = (40)10 = (101000)2 ! S = (32)10 = (100000)2.

4. Turn on the last zero in S, e.g., S = (41)10 = (101001)2 ! S = (43)10 = (101011)2.

5. Turn o↵ the last consecutive run of ones in S
e.g., S = (39)10 = (100111)2 ! S = (32)10 = (100000)2.

6. Turn on the last consecutive run of zeroes in S
e.g., S = (36)10 = (100100)2 ! S = (39)10 = (100111)2.

7*. Solve UVa 11173 - Grey Codes with a one-liner bit manipulation expression for each
test case, i.e., find the k-th Gray code.

8*. Let’s reverse the UVa 11173 problem above. Given a gray code, find its position k
using bit manipulation.

Profile of Data Structure Inventor

George Boole (1815-1864) was an English mathematician, philosopher, and logician. He is
best known to Computer Scientists as the founder of Boolean logic, the foundation of modern
digital computers. Boole is regarded as the founder of the field of Computer Science.
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2.2.4 Big Integer (Python & Java)

When the intermediate and/or the final result of an integer-based mathematical computa-
tion cannot be stored inside the largest built-in integer data type and the given problem
cannot be solved with any prime-power factorization or modular arithmetic techniques (see
the details in Book 2), we have no choice but to resort to Big Integer (a.k.a. bignum) li-
braries. An example: compute the precise value of 40! (the factorial of 40). The result is
815 915 283 247 897 734 345 611 269 596 115 894 272 000 000 000 (48 digits). This is clearly too
large to fit in a 64-bit C/C++ unsigned long long13, Java long14, or OCaml Int64.

One way to implement Big Integer library is to store the Big Integer as a (long) string15.
For example, we can store 1021 inside a string num1 = “1,000,000,000,000,000,000,000” with-
out any problem whereas this is already overflow in a 64-bit C/C++ unsigned long long,
Java long, or OCaml Int64. Then, for common mathematical operations, we can use digit
by digit operations to process the two Big Integer operands. For example, with num2 =
“173”, we can compute num1 + num2 as:

num1 = 1,000,000,000,000,000,000,000
num2 = 173

------------------------------- +
num1 + num2 = 1,000,000,000,000,000,000,173

We can also compute num1 * num2 as:

num1 = 1,000,000,000,000,000,000,000
num2 = 173

------------------------------ *
3,000,000,000,000,000,000,000

70,000,000,000,000,000,000,00
100,000,000,000,000,000,000,0
------------------------------- +

num1 * num2 = 173,000,000,000,000,000,000,000

Addition and subtraction are the two simplest operations in Big Integer. Multiplication takes
a bit more programming, as seen in the example above. Implementing e�cient division and
raising an integer to a certain power (see details in Book 2) are more complicated. Coding
these library routines in C/C++ (or OCaml) under a stressful contest environment can
be a buggy a↵air, even if we can bring notes containing such C/C++ library in ICPC16.
Fortunately, Python has native support and Java has a BigInteger class that we can use for
this purpose. As of year 2020, the C++ STL does not17 have such a feature and thus it is a
good idea to use Python or Java to deal with these Big Integer problems.

13GCC has a 128-bit integer type int128 but it won’t help here.
14Note that Java long is a 64-bit signed integer that ranges from [-263..263-1]. To deal with 64-bit unsigned

integers in Java, we have no choice but to use Java BigInteger.
15Actually, a primitive data type also stores numbers as limited strings of bits in computer memory. For

example, a 32-bit int data type stores an integer as 32 bits of binary. The basic Big Integer technique is
just a generalization of this technique that uses decimal form (base 10) and longer strings of digits. Note:
Java BigInteger class and Python likely use more e�cient methods than the one shown in this section.

16Good news for IOI contestants. IOI tasks usually do not require contestants to deal with Big Integer.
17Pure C++ users must built own custom Big Integer data structure.
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Python’s native support for Big Integer makes it the most preferred programming lan-
guage to solve Big Integer problems as illustrated in this section.

Java route is just slightly longer. The Java BigInteger (we abbreviate it as BI) class
supports basic integer operations: addition — add(BI), subtraction — subtract(BI), mul-
tiplication — multiply(BI), power — pow(int exponent), division — divide(BI), re-
mainder — remainder(BI), modulo — mod(BI) (di↵erent from remainder(BI)), division
and remainder — divideAndRemainder(BI), and a few other interesting functions discussed
later. All are just ‘one liner’.

However, we need to remark that all Big Integer operations are inherently slower than
the same operations on standard 32/64-bit integer data types. Rule of Thumb: if you can use
another algorithm that only requires built-in integer data type to solve your mathematical
problem, then use it instead of resorting to Big Integer. Note that by year 2020, Big Integer
problems are less frequent than in the previous decade as more problem authors prefer to
use the fast modular arithmetic techniques instead (see the details in Book 2).

For those who are new to Python or Java BigInteger class, we provide the following
short Python and Java code, which is the solution for UVa 10925 - Krakovia. This problem
requires Big Integer addition (to sum N large bills) and division (to divide the large sum to
F friends). Observe how short and clear the code is compared to if you have to write your
own Big Integer routines.

First, we show the short Python code. Notice that in our Python code, we read all inputs
first into memory to speed up the execution (see Section 3.2.3).

import sys
inputs = sys.stdin.read().splitlines() # make Python I/O faster
caseNo = 1
ln = 0
while True:

N, F = map(int, inputs[ln].split()) # N bills, F friends
ln += 1
if N == 0 and F == 0: break
sum = 0 # native support
for _ in range(N): # sum the N large bills

sum += int(inputs[ln]) # native Big Integer
ln += 1

print("Bill #%d costs %d: each friend should pay %d\n"
% (caseNo, sum, sum//F)) # integer division

caseNo += 1
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Next, we present the slightly longer Java code (but still much shorter than if we have to write
our own Big Integer routine in C++). In our code, we use the fast Java I/O: Bu↵eredReader
and PrintWriter instead of Scanner and System.out.println.

import java.io.*;
import java.util.*;
import java.math.BigInteger; // in package java.math

class Main { // UVa 10925 - Krakovia
public static void main(String[] args) throws Exception {

BufferedReader br = new BufferedReader( // use BufferedReader
new InputStreamReader(System.in));

PrintWriter pw = new PrintWriter( // and PrintWriter
new BufferedWriter(new OutputStreamWriter(System.out))); // = fast IO

int caseNo = 0;
while (true) {

StringTokenizer st = new StringTokenizer(br.readLine());
int N = Integer.parseInt(st.nextToken()); // N bills
int F = Integer.parseInt(st.nextToken()); // F friends
if (N == 0 && F == 0) break;
BigInteger sum = BigInteger.ZERO; // built-in constant
for (int i = 0; i < N; ++i) { // sum the N large bills

BigInteger V = new BigInteger(br.readLine()); // string constructor
sum = sum.add(V); // BigInteger addition

}
pw.printf("Bill #%d costs ", ++caseNo);
pw.printf(sum.toString());
pw.printf(": each friend should pay ");
pw.printf(sum.divide(BigInteger.valueOf(F)).toString());
pw.printf("\n\n"); // divide to F friends

}
pw.close();

}
}

Source code: ch2/lineards/UVa10925.java|py

Exercise 2.2.4.1: Compute the last non zero digit of 25!; can we use built-in data types?

Exercise 2.2.4.2: Check if 25! is divisible by 9317; can we use built-in data types?

Exercise 2.2.4.2*: As of year 2020, programming contest problems involving arbitrary pre-
cision decimal numbers (not necessarily integers) are still rare. Solve UVa 10464, UVa 11821,
and UVa 12930 problems using another library: Java BigDecimal class! See https://docs.
oracle.com/en/java/javase/11/docs/api/java.base/java/math/BigDecimal.html.
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2.2.5 Linked Data Structures

Linked List

Library:
C++ STL list or forward list18.
Java LinkedList.
Python list.
OCaml List module.

Although this data structure almost always appears in data structure and algorithm text-
books, the Linked List is usually avoided in typical (contest) problems. This is due to the
ine�ciency in accessing items (a linear scan has to be performed from the head or the tail of
a list) and the usage of pointers makes it prone to runtime errors if not implemented prop-
erly. In this book, almost all forms of Linked List have been replaced by the more flexible19

C++ STL vector, Java ArrayList, or Python list.
The few exceptions are UVa 11988 - Broken Keyboard (a.k.a. Beiju Text)—where you

are required to dynamically maintain a (linked) list of characters and e�ciently insert a new
character anywhere in the list, i.e., at front (head), current, or back (tail) of the (linked) list,
Kattis - joinstrings, Kattis - sim, and Kattis - teque. Out of ⇡ 3458 UVa/Kattis problems
that the authors have solved, these few problems are the rare linked list problem we have
encountered thus far—some are our own proposed problems.

Stack

Library:
C++ STL stack.
Java Stack.
Python list.
OCaml List/Stack module.

A stack can be viewed as a ‘restricted list’ that only allows for insertion (push) and
deletion (pop) from the top. This behavior is usually referred to as Last In First Out (LIFO)
and is reminiscent of literal stacks in the real world.

Typical C++ STL stack operations include push()/pop() (insert/remove from the top
of stack), top() (obtain content from the top of stack), and empty(). All stack operations
are very e�cient, i.e., in O(1).

This data structure is often used as part of algorithms that solve certain problems,
e.g., bracket (parenthesis) matching in Section 2.2.6, Postfix calculator and Infix to Postfix
conversion also in Section 2.2.6, finding Strongly Connected Components (SCCs) in Section
4.2.10, and part of Graham’s scan algorithm in Book 2.

Queue

Library:
C++ STL queue.
Java Queue (interface20).
Python list.
OCaml Queue module.

18This forward list library is very rarely used as its space saving feature is not usually needed.
19OCaml does not have built-in resizeable array.
20The Java Queue is only an interface that is usually instantiated with Java LinkedList.
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A queue can be viewed as another ‘restricted list’ that only allows for insertion (enqueue)
from the back (tail) and deletion (dequeue) from the front (head). This behavior is similarly
referred to as First In First Out (FIFO), just like actual queues in the real world.

Typical C++ STL queue operations include push()/pop() (insert from back/remove
from front of queue), front()/back() (obtain content from the front/back of queue), and
empty(). All queue operations are also very e�cient, i.e., in O(1).

This data structure is used in algorithms like Breadth First Search (BFS) in Section 4.2.3
and certain FIFO simulations.

Double-ended Queue (Deque)

Library:
C++ STL deque.
Java Deque (interface21).
Python deque.
No built-in support for deque in OCaml.

This data structure is very similar to queue above, except that deque supports fast O(1)
insertions and deletions at both the beginning and the end of the deque.

Typical C++ STL deque operations include push back(), pop front() (just like the
normal queue), but now with addition of push front() and pop back() (specific for deque).
Most deque operations are also very e�cient, i.e., in O(1). Note that C++ STL deque is not
implemented using Doubly Linked List and it also has fast O(1) random access capability,
i.e., the at() or [] operators. This way, you can view C++ STL deque as a more flexible–
albeit slightly slower–version of C++ STL vector.

This data structure is important in certain algorithms, e.g., the special BFS to solve
the SSSP problem on 0/1-Weighted Graph in Section 4.4.2 and inside some Sliding Window
algorithm variants in Book 2.

If you are interested to explore more details about Linked List and its variants, please visit
VisuAlgo, Linked List visualization. You will see that the four recent data structures: (Singly
or Doubly) Linked List, Stack, Queue, Deque are actually closely related. The URL for the
Linked List visualization and source code example are shown below.

Visualization: https://visualgo.net/en/list

Source code: ch2/lineards/list.cpp|java|py|ml

Exercise 2.2.5.1*: We can also use a resizeable array (C++ STL vector/Java ArrayList)
to implement an e�cient22 stack. Figure out how to achieve this. Follow up question: Can
we use a static array, linked list, or deque instead? Why or why not?

Exercise 2.2.5.2*: We can use a linked list (C++ STL list or Java LinkedList) to
implement an e�cient23 queue (or deque). Figure out how to achieve this. Follow up
question: Can we use a resizeable array instead? Why or why not?

Exercise 2.2.5.3*: How to implement an e�cient24 queue using two resizeable arrays?

21The Java Deque is also an interface that is usually instantiated with Java LinkedList.
22Where all operations remain O(1).
23Where all operations remain O(1).
24Where all operations remain O(1) in amortized sense.
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2.2.6 Special Stack-based Problems

a. Bracket (Parenthesis) Matching

Programmers are very familiar with various form of braces: ‘()’ (parentheses), ‘[]’ (square
brackets), ‘{}’ (curly braces), etc as they use braces quite often in their code especially
when dealing with if statements and loops. Braces can be nested and/or mixed, e.g., ‘(())’,
‘{{}}’, ‘[[]]’, ‘([])’, etc. A well-formed code must have a matched set of braces. The Bracket
(Parenthesis) Matching problem usually involves a question on whether a given set of braces
is properly nested. For example, ‘(())’, ‘({})’, ‘(){}[]’ are correctly matched braces whereas
‘(()’, ‘(}’, ‘)(’ are not correctly matched.

O(n) with Stack

We read the brackets one by one from left to right. Every time we encounter a close bracket,
we need to match it with the latest open bracket (of the same type). This matched pair is
then removed from consideration and the process is continued. This requires a ‘Last In First
Out’ data structure: a Stack (see Section 2.2.5).

We start from an empty stack. When we encounter an open bracket, we push it into the
stack. When we encounter a close bracket, we check if it is of the same type with the top of
the stack. This is because the top of the stack is the one that has to be matched with the
current close bracket. Once we have a match, we pop the topmost bracket from the stack to
remove it from future consideration. Only if we manage to reach the last bracket and find
that the stack is back to empty, then we know that all the brackets are properly matched.

As we examine each of the n braces only once and all stack operations are O(1), this
algorithm clearly runs in O(n).

An example of bracket (parenthesis) matching is shown in Table 2.1.

Braces Stack (bottom to top) Remarks
( ) { [ ] } ( An open (normal) parenthesis
( ) { [ ] } A close (normal) parenthesis, matched with ‘(’
( ) { [ ] } { An open (curly) brace
( ) { [ ] } { [ An open (square) bracket
( ) { [ ] } { A close (square) bracket, matched with ‘[’
( ) { [ ] } A close (curly) brace, matched with ‘{’, all OK

Table 2.1: Example of Bracket (Parenthesis) Matching

Bracket Matching Variant(s)

The number of ways n pairs of parentheses can be correctly matched can be found with
Catalan formula (see Book 2). The optimal way to multiply matrices (i.e., the Matrix Chain
Multiplication problem) also involves bracketing. This variant can be solved with Dynamic
Programming (see Book 2).
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b. Postfix Calculator

Algebraic Expressions and Postfix Calculator

There are three types of algebraic expressions: Infix (the natural way for human to write
algebraic expressions), Prefix (Polish notation), and Postfix (Reverse Polish notation). In
Infix/Prefix/Postfix expressions, an operator is located (in the middle of)/before/after two
operands, respectively. In Table 2.2, we show three Infix expressions, their corresponding
Prefix/Postfix expressions, and their values.

Infix Prefix Postfix Value
2 + 6 * 3 + 2 * 6 3 2 6 3 * + 20
( 2 + 6 ) * 3 * + 2 6 3 2 6 + 3 * 24
4 * ( 1 + 2 * ( 9 / 3 ) - 5 ) * 4 - + 1 * 2 / 9 3 5 4 1 2 9 3 / * + 5 - * 8

Table 2.2: Examples of Infix, Prefix, and Postfix expressions

O(n) Postfix Calculator

Postfix expressions are more computationally e�cient than Infix expressions. First, we do
not need (complex) parentheses as the precedence rules are already embedded in the Postfix
expression. Second, we can also compute partial results as soon as an operator is specified.
These two features are not found in Infix expressions.

Postfix expression can be computed in O(n) using Postfix calculator algorithm. Initially,
we start with an empty stack. We read the expression from left to right, one token at a time.
If we encounter an operand, we will push it to the stack. If we encounter an operator, we
will pop the top two items of the stack, do the required operation, and then put the result
back to the stack. Finally, when all tokens have been read, we return the top (the only item)
of the stack as the final answer.

As each of the n tokens is only processed once and all stack operations are O(1), this
Postfix Calculator algorithm runs in O(n).

An example of a Postfix calculation is shown in Table 2.3.

Postfix Stack (bottom to top) Remarks
4 1 2 9 3 / * + 5 - * 4 1 2 9 3 The first five tokens are operands
4 1 2 9 3 / * + 5 - * 4 1 2 3 Take 3 and 9, compute 9 / 3, push 3
4 1 2 9 3 / * + 5 - * 4 1 6 Take 3 and 2, compute 2 * 3, push 6
4 1 2 9 3 / * + 5 - * 4 7 Take 6 and 1, compute 1 + 6, push 7
4 1 2 9 3 / * + 5 - * 4 7 5 An operand
4 1 2 9 3 / * + 5 - * 4 7 5 Take 5 and 7, compute 7 - 5, push 2
4 1 2 9 3 / * + 5 - * 4 2 Take 2 and 4, compute 4 * 2, push 8
4 1 2 9 3 / * + 5 - * 8 Return 8 as the answer

Table 2.3: Example of a Postfix Calculation
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c. Infix to Postfix Conversion with O(n) Shunting-yard Algorithm

Knowing that Postfix expressions are more computationally e�cient than Infix expressions,
many compilers will convert Infix expressions in the source code (most programming lan-
guages use Infix expressions25) into Postfix expressions. To use the e�cient Postfix Calculator
as shown earlier, we need to be able to convert Infix expressions into Postfix expressions ef-
ficiently. One of the possible algorithm is the ‘Shunting-yard’ algorithm invented by Edsger
Wybe Dijkstra (the inventor of Dijkstra’s algorithm in Section 4.4.3).

Shunting-yard algorithm has similar flavor with Bracket (Parenthesis) Matching discussed
earlier and Postfix Calculator. The algorithm also uses a stack, which is initially empty. We
read the expression from left to right, one token at a time. If we encounter an operand,
we will immediately output it. If we encounter an open bracket, we will push it to the
stack. If we encounter a close bracket, we will output the topmost items of the stack until
we encounter an open bracket (but we do not output the open bracket). If we encounter an
operator, we will keep outputting and then popping the topmost item of the stack if it has
greater than or equal precedence with this operator, or until we encounter an open bracket,
then push this operator to the stack. At the end, we will keep outputting and then popping
the topmost item of the stack until the stack is empty.

As each of the n tokens is only processed once and all stack operations are O(1), this
Shunting-yard algorithm runs in O(n).

An example of a Shunting-yard algorithm execution is shown in Table 2.4.

Infix Stack Postfix Remarks
4 * ( 1 + 2 * ( 9 / 3 ) - 5 ) 4 Immediately output
4 * ( 1 + 2 * ( 9 / 3 ) - 5 ) * 4 Put to stack
4 * ( 1 + 2 * ( 9 / 3 ) - 5 ) * ( 4 Put to stack
4 * ( 1 + 2 * ( 9 / 3 ) - 5 ) * ( 4 1 Immediately output
4 * ( 1 + 2 * ( 9 / 3 ) - 5 ) * ( + 4 1 Put to stack
4 * ( 1 + 2 * ( 9 / 3 ) - 5 ) * ( + 4 1 2 Immediately output
4 * ( 1 + 2 * ( 9 / 3 ) - 5 ) * ( + * 4 1 2 Put to stack
4 * ( 1 + 2 * ( 9 / 3 ) - 5 ) * ( + * ( 4 1 2 Put to stack
4 * ( 1 + 2 * ( 9 / 3 ) - 5 ) * ( + * ( 4 1 2 9 Immediately output
4 * ( 1 + 2 * ( 9 / 3 ) - 5 ) * ( + * ( / 4 1 2 9 Put to stack
4 * ( 1 + 2 * ( 9 / 3 ) - 5 ) * ( + * ( / 4 1 2 9 3 Immediately output
4 * ( 1 + 2 * ( 9 / 3 ) - 5 ) * ( + * 4 1 2 9 3 / Only output ‘/’
4 * ( 1 + 2 * ( 9 / 3 ) - 5 ) * ( - 4 1 2 9 3 / * + Output ‘*’ then ‘+’
4 * ( 1 + 2 * ( 9 / 3 ) - 5 ) * ( - 4 1 2 9 3 / * + 5 Immediately output
4 * ( 1 + 2 * ( 9 / 3 ) - 5 ) * 4 1 2 9 3 / * + 5 - Only output ‘-’
4 * ( 1 + 2 * ( 9 / 3 ) - 5 ) 4 1 2 9 3 / * + 5 - * Empty the stack

Table 2.4: Example of an Execution of Shunting-yard Algorithm

Exercise 2.2.6.1*: What if we are given Prefix expressions instead?
How to evaluate a Prefix expression in O(n)?

25One programming language that uses Prefix expressions is Scheme.
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Programming exercises involving linear data structures with libraries:

a. 1D Array Manipulation, Medium

1. Entry Level: Kattis - jollyjumpers * (1D Boolean flags to check [1..n-1]; also
available at UVa 10038 - Jolly Jumpers)

2. UVa 12150 - Pole Position * (simple manipulation)

3. UVa 12356 - Army Buddies * (similar to deletion in doubly linked lists
but we can still use a 1D array for the underlying data structure)

4. UVa 13181 - Sleeping in hostels * (find the largest gap between two Xs;
special corner cases at the two end points)

5. Kattis - baloni * (clever use of 1D histogram array to decompose the shots
as per requirement)

6. Kattis - downtime * (1D array; use Fenwick Tree-like operation for Range
Update Point Query)

7. Kattis - greedilyincreasing * (just 1D array manipulation; this is not the DP-
LIS problem)

Extra UVa: 00414, 00482, 00591, 10050, 11192, 11496, 11608, 11875, 12854,
12959, 12996, 13026.

Extra Kattis: erase.

b. 1D Array Manipulation, Harder

1. Entry Level: UVa 10978 - Let’s Play Magic * (1D string array)

2. UVa 11222 - Only I did it * (use several 1D arrays)

3. UVa 12662 - Good Teacher * (1D array manipulation; brute force)

4. UVa 13048 - Burger Stand * (use 1D Boolean array; simulate)

5. Kattis - divideby100 * (big 1D character array processing; be careful)

6. Kattis - mastermind * (1D array manipulation to count r and s)

7. Kattis - pivot * (static range min/max query problem; special condition
allows this problem to be solvable in O(n) using help of 1D arrays)

Extra UVa: 00230, 00394, 00467, 00665, 00946, 11093, 11850.

Extra Kattis: astro, flippingpatties, inverteddeck, physicalmusic, piperotation,
queens, rockband, tra�c, upsanddownsofinvesting.

Also see: Direct Addressing Table (Section 2.3.2).

c. 2D Array Manipulation, Easier

1. Entry Level: Kattis - epigdanceo↵ * (count number of CCs on 2D grid;
simpler solution exists: count the number of blank columns plus one)

2. UVa 11581 - Grid Successors * (simulate the process)

3. UVa 12187 - Brothers * (simulate the process)

4. UVa 12667 - Last Blood * (1D+2D arrays to store submission status)

5. Kattis - flowshop * (interesting 2D array manipulation)

6. Kattis - imageprocessing * (interesting 2D array manipulation)

7. Kattis - nineknights * (2D array checks; 8 directions)

Extra UVa: 00541, 00585, 10703, 10920, 11040, 11349, 11835, 12981.

Extra Kattis: compromise, thisaintyourgrandpascheckerboard.

74



CHAPTER 2. DATA STRUCTURES AND LIBRARIES c� Steven, Felix, Suhendry

d. 2D Array Manipulation, Harder

1. Entry Level: Kattis - 2048 * (just a 2D array manipulation problem; utilize
symmetry using 90 degrees rotation(s) to reduce 4 cases into 1)

2. UVa 00466 - Mirror Mirror * (core functions: rotate and reflect)

3. UVa 11360 - Have Fun with Matrices * (do as asked)

4. UVa 12291 - Polyomino Composer * (do as asked; a bit tedious)

5. Kattis - flagquiz * (array of array of strings; be careful; duplicates may exists)

6. Kattis - funhouse * (2D array manipulation; note the direction update)

7. Kattis - rings2 * (more challenging 2D array manipulation; special output
formatting style)

Extra UVa: 00101, 00434, 00512, 00707, 10016, 10855, 12398.

Extra Kattis: apples, falcondive, keypad, prva, tetris.

e. Sorting, Easier

1. Entry Level: Kattis - basicprogramming2 * (a nice problem about basic sort-
ing applications)

2. UVa 10107 - What is the Median? * (find median of a growing/dynamic
list of integers; we can use multiple calls of nth element in algorithm)

3. UVa 12541 - Birthdates * (LA 6148 - HatYai12; sort; youngest + oldest)

4. UVa 12709 - Falling Ants * (LA 6650 - Dhaka13; although the problem
has a complicated story, it has a very easy solution with sort routine)

5. Kattis - height * (insertion sort simulation)

6. Kattis - mjehuric * (a direct simulation of a bubble sort algorithm)

7. Kattis - sidewayssorting * (stable sort or sort multi-fields of columns of a 2D
array; ignore case)

Extra UVa: 00400, 00855, 10880, 10905, 11039, 11588, 11777, 11824, 12071,
12861, 13113.

Extra Kattis: closingtheloop, cups, judging.

f. Sorting, Harder

1. Entry Level: Kattis - sortofsorting * (stable sort or sort multi-fields)

2. UVa 01610 - Party Games * (LA 6196 - MidAtlanticUSA12; median)

3. UVa 10258 - Contest Scoreboard * (multi-fields sorting; use sort; sim-
ilar to UVa 00790)

4. UVa 11321 - Sort Sort and Sort * (be careful with negative mod!)

5. Kattis - classy * (sort using modified comparison function; a bit of string
parsing/tokenization)

6. Kattis - dyslectionary * (sort the reverse of original string; output formatting)

7. Kattis - musicyourway * (stable sort; custom comparison function)

Extra UVa: 00123, 00450, 00790, 10194, 10698, 11300.

Extra Kattis: addemup, booking, chartingprogress, dirtydriving, gearchang-
ing, includescoring, lawnmower, longswaps, retribution, zipfsong.

Also see: Dynamic Sorting with Priority Queue/bBST (set/map) (Section
2.3.1/2.3.3), Order Statistics Tree (Section 2.3.4), Binary Search Algorithm
that requires pre-sorting (Section 3.3.1), and Greedy Algorithm involving
sorting (Section 3.4).
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g. Special Sorting Problems

1. Entry Level: UVa 11462 - Age Sort * (standard Counting Sort problem)

2. UVa 00612 - DNA Sorting * (needs O(n2) stable sort)

3. UVa 11495 - Bubbles and Buckets * (requires O(n log n) merge sort)

4. UVa 13212 - How many inversions? * (requires O(n log n) merge sort)

5. Kattis - bread * (inversion index; hard to derive)

6. Kattis - magicsequence * (Radix Sort in custom base to avoid TLE)

7. Kattis - mali * (Counting Sort two arrays; greedy matching largest+smallest
at that point)

Extra UVa: 00299, 10327.

Extra Kattis: excursion, froshweek, gamenight, sort, ultraquicksort.

h. Bit Manipulation

1. Entry Level: UVa 11933 - Splitting Numbers * (simple bit exercise)

2. UVa 10264 - The Most Potent Corner * (heavy bitmask manipulation)

3. UVa 12571 - Brother & Sisters * (precalculate AND operations)

4. UVa 12720 - Algorithm of Phil * (observe the pattern in this binary to
decimal conversion variant; involves modular arithmetic)

5. Kattis - bitbybit * (be very careful with and + or corner cases)

6. Kattis - deathstar * (can be solved with bit manipulation)

7. Kattis - snapperhard * (bit manipulation; find the pattern; the easier version
is also available at Kattis - snappereasy *)

Extra UVa: 00594, 00700, 01241, 10469, 11173, 11760, 11926.

Extra Kattis: bits, hypercube, iboard, zebrasocelots.

Others: IOI 2011 - Pigeons (simpler with bit manipulation).

i. Big Integer26

1. Entry Level: UVa 10925 - Krakovia * (Big Integer addition and division)

2. UVa 00713 - Adding Reversed ... * (use StringBu↵er reverse())

3. UVa 10523 - Very Easy * (Big Integer addition, multiplication, power)

4. UVa 11879 - Multiple of 17 * (Big Integer: mod, divide, subtract, equals)

5. Kattis - primaryarithmetic * (not a Big Integer problem but a simulation of
basic addition)

6. Kattis - simpleaddition * (that A+B on Big Integer question)

7. Kattis - wizardofodds * (if K is bigger than 350, the answer is clear; else just
check if 2K � N)

Extra UVa: 00424, 00465, 00619, 00748, 01226, 01647, 10013, 10083, 10106,
10198, 10430, 10433, 10464, 10494, 10519, 10992, 11448, 11664, 11821,
11830, 12143, 12459, 12930.

Extra Kattis: disastrousdoubling, generalizedrecursivefunctions, threepowers.

26Notice the shift of trend. There are much more older UVa problems (before 2010) involving Big Integer
compared to more recent Kattis problems (after 2010).
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j. Stack

1. Entry Level: Kattis - evenup * (use stack to solve this problem)

2. UVa 00514 - Rails * (use stack to simulate the process)

3. UVa 01062 - Containers * (LA 3752 - WorldFinals Tokyo07; simulation
with stack; maximum answer is 26 stacks; O(n) solution exists)

4. UVa 13055 - Inception * (nice problem about stack)

5. Kattis - pairingsocks * (simulation using two stacks; just do as asked)

6. Kattis - restaurant * (simulation with stack-based concept; drop plates at
stack 2 (LIFO); use move 2->1 to reverse order; take from stack 1 (FIFO))

7. Kattis - throwns * (use stack of egg positions to help with the undo operation;
be careful of corner cases involving modulo operation)

Extra UVa: 00127, 00732, 10858.

Extra Kattis: dream, reversebinary, symmetricorder, thegrandadventure.

Also see: implicit stacks in recursive function calls and the next category.

k. Special Stack-based Problems

1. Entry Level: UVa 00551 - Nesting a Bunch of ... * (bracket matching;
use stack)

2. UVa 00673 - Parentheses Balance * (similar to UVa 00551; classic)

3. UVa 00727 - Equation * (Infix to Postfix conversion problem)

4. UVa 11111 - Generalized Matrioshkas * (bracket matching with twists)

5. Kattis - bungeebuilder * (clever usage of stack; linear pass; bracket (moun-
tain) matching variant)

6. Kattis - circuitmath * (postfix calculator problem)

7. Kattis - delimitersoup * (bracket matching; stack)

l. List/Queue/Deque

1. Entry Level: Kattis - joinstrings * (all ‘+’ operations must be O(1))

2. UVa 11988 - Broken Keyboard ... * (rare linked list problem)

3. UVa 10172 - The Lonesome Cargo ... * (use both queue and stack)

4. UVa 12108 - Extraordinarily Tired ... * (simulation with N queues)

5. Kattis - integerlists * (use deque for fast deletion from front (normal) & back
(reversed list); use stack to reverse the final list if it is reversed at the end)

6. Kattis - sim * (use list and its iterator)

7. Kattis - teque * (all operations must be O(1))

Extra UVa: 00246, 00540, 10935, 11797, 12100, 12207.

Extra Kattis: backspace, ferryloading3, ferryloading4, foosball, server, trend-
ingtopic.

Also see: queue/deque in BFS (see Section 4.2.3, 4.4.2, and in Book 2),
deque in some sliding window variants in Book 2.
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2.3 Non-Linear DS with Built-in Libraries

For some problems, a linear data structure is not the best way to organize data. With the
e�cient implementations of non-linear data structures shown below, we can operate on the
data in a quicker fashion, thereby speeding up the algorithms that rely on them.

For example, if we need a dynamic27 ordering of keys based on priorities, using C++
STL priority queue can provide us O(log n) performance for enqueue/dequeue with just
a few lines of code (that we still have to write ourself), whereas doing the same with a
(static) array may require O(n) enqueue/deqeue, and we will need to write a rather long
code to do so. Similarly if we need to maintain a dynamic collection of key ! value pairs,
using C++ STL map28 can provide us O(log n) performance for insertion/search/deletion
operations with just a few lines of code, whereas storing the same information inside a static
array of structs may require O(n) insertion/search/deletion, and longer to code.

2.3.1 Binary Heap (Priority Queue)

Library:
C++ STL priority queue.
Java PriorityQueue.
Python heapq.
OCaml Set module (see the details in Section 2.3.3).

Quick Review

The Binary (Max) Heap is a way to organize data in a tree. In this section, when we refer
to Heap, we are referring to Binary (Max) Heap. The Heap is also a binary tree like the
Binary Search Tree (BST, discussed in Section 2.3.3), except that it must be a complete29

tree. Complete binary trees can be stored e�ciently in a compact 1-indexed array of size
n + 1 (extra one cell for easier implementation), which is often preferred to an explicit tree
representation. For example, the array A = {-, 90, 19, 36, 17, 3, 25, 1, 2, 7} is the
compact array representation of Figure 2.4 with index 0 ignored. One can navigate from
a certain index (vertex) i to its parent, left child, and right child by using simple index
manipulation: b i

2c, 2 ⇥ i, and 2 ⇥ i + 1, respectively. These navigation can be made faster
using bit manipulation (see Section 2.2): i>>1, i<<1, and (i<<1) + 1, respectively.

Figure 2.4: Example of a Binary (Max) Heap with Max Item (90) Highlighted

The Heap enforces Heap property: In each subtree rooted at x, items on the left and right
subtrees of x are smaller than (or equal to) x (see Figure 2.4). This is an application

27The contents of a dynamic data structure is frequently modified via insert/delete/update operations.
28We can also use the faster C++ STL unordered map with O(1) performance if the keys do not have to

be ordered.
29A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled.

All vertices in the last level must also be filled from left-to-right.
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of the Divide (Reduce) and Conquer concept (see Section 3.3). The property guarantees
that the top (or root) of the Heap is always the maximum item. There is no notion of
a ‘search’ in the (basic implementation of a) Heap. The Heap instead allows for the fast
extraction (and deletion) of the maximum item: ExtractMax() and insertion of new items:
Insert(v)—both of which can be achieved by in a O(log n) root-to-leaf or leaf-to-root
traversal, performing swapping operations to maintain the (Max) Heap property whenever
necessary (see [5, 3, 48, 9] or VisuAlgo for details/animations).

Priority Queue ADT and Its Library Solutions

The Heap is a useful data structure for modeling a Priority Queue Abstract Data Type
(ADT), where the item with the highest priority (the maximum item) can be dequeued
(ExtractMax()) and a new item v can be enqueued (Insert(v)), both in e�cient30 O(log n)
time. The implementation31 of priority queue is available in the C++ STL queue library
(Java PriorityQueue or Python heapq).

Typical C++ STL priority queue operations include push(), pop(), top() (obtain
the greatest element of the priority queue), and empty().

Priority Queue is an important component in algorithms like Prim’s (and Kruskal’s)
algorithms for the Minimum Spanning Tree (MST) problem (see Section 4.3), Dijkstra’s
algorithm for the Single-Source Shortest Paths (SSSP) problem (see Section 4.4.3), and the
A* Search algorithm (see Book 2).

Partial Sort and Heap Sort

This data structure is also used to perform partial sort in the C++ STL algorithm
library. One possible implementation32 is by processing the items one by one and creating
a Max33 Heap of k items, removing the largest item whenever its size exceeds k (k is the
number of items requested by user). The smallest k items can then be obtained in descending
order by dequeuing the remaining items in the Max Heap. As each dequeue operation is
O(log k), partial sort has O(n log k) time complexity34. When k = n, this algorithm is
equivalent to a heap sort. Note that although the time complexity of a heap sort is also
O(n log n), heap sort is often slower than quick sort because heap operations access data
stored in distant indices and are thus not cache-friendly.

UpdateKey(oldKey, newKey) and RemoveKey(key) Operations

There are two possible extra operations of Priority Queue ADT that are currently not directly
supported by the C++ STL priority queue (and Java PriorityQueue).

30There are theoretically faster (and complex) heap structures but our experiments suggest that we can
live with O(log n) performance of Binary Heap data structure for most Priority Queue-based problems.

31The default C++ STL priority queue is a Max Heap (dequeuing yields items in descending key order)
whereas the default Java PriorityQueue is a Min Heap (yields items in ascending key order). Tips: A Max
Heap containing numbers can be converted into a Min Heap (and vice versa) by inserting the negated keys.
This is because negating a set of numbers will reverse their order when sorted. This technique is used several
times in this book. However, if the priority queue is used to store 32-bit signed integers, an overflow will
occur if �231 is negated as 231 � 1 is the maximum value of a 32-bit signed integer.

32Alternative partial sort implementation is to create the (Min) Heap in O(n) and then remove the
smallest k items from the (Min) Heap in O(k log n), resulting in overall time complexity of O(n+ k log n).

33The default partial sort produces the smallest k items in ascending order.
34Notice that the time complexity is O(n log k) where k is the output size and n is the input size. This

means that the algorithm is ‘output-sensitive’ since its running time depends not only on the input size but
also on the amount of items that it has to output.
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The first extra operation is the UpdateKey(oldKey, newKey) operation, which allows
the (Max) Heap item oldKey (that can be anywhere inside the Heap, not necessarily at the
root) to be updated to newKey that can be either smaller or larger than oldKey. Dijkstra’s
algorithm needs this extra operation (see Section 4.4.3 for detailed explanation).

The second extra operation is the RemoveKey(key) operation, which allows removal of
Heap item key (that can be anywhere inside the Heap, not necessarily at the root).

There are several possible ways to implement these two extra operations e�ciently, i.e.,
in O(log n). The easiest solution is shown in Section 2.3.3.

If you are interested to explore more details about Binary (Max) Heap, please visit Visu-
Algo, Binary Heap visualization, that shows visualizations of Binary Heap and its operations.
The URL for the Binary Heap visualization and source code example for several Priority
Queue operations are shown below.

Visualization: https://visualgo.net/en/heap

Source code: ch2/nonlineards/priority queue.cpp|java|py|ml

Exercise 2.3.1.1: We will not discuss the basics of Heap operations in this book. Instead,
we will use a series of questions to verify your understanding of Heap concepts. You are
encouraged to use https://visualgo.net/en/heap when attempting this exercise.

1. With Figure 2.4 as the initial Heap, display the steps taken by Insert(26).

2. After answering question 1 above, display the steps taken by ExtractMax().

3. After answering question 1+2 above, display the steps taken by Heap Sort (perform
successive ExtractMax() operations until the Heap is empty).

Exercise 2.3.1.2: Is the structure represented by a 1-based compact array (ignoring index
0) sorted in descending order a Max Heap?

Exercise 2.3.1.3*: Prove or disprove this statement: “The second largest item in a Max
Heap with n � 3 distinct items is always one of the direct children of the root”. Follow up
question: What about the third largest item? Where is/are the potential location(s) of the
third largest item in a Max Heap?

Exercise 2.3.1.4*: Prove or disprove this statement: “The smallest item in a Max Heap
with n � 3 distinct items is always one of the leaf”.

Exercise 2.3.1.5*: Given a 1-based compact array A containing n integers (1  n  100K)
that are guaranteed to satisfy the Max Heap property, output the items in A that are greater
than an integer v. What is the best algorithm?

Exercise 2.3.1.6*: Given an unsorted array S of n distinct integers (2k  n  100K), find
the largest and smallest k (1  k  32) integers in S in O(n log k). Note: For this written
exercise, assume that an O(n log n) algorithm is not acceptable.

Exercise 2.3.1.7*: Suppose that we only need the DecreaseKey(oldKey, newKey) oper-
ation, i.e., an UpdateKey operation where the update always makes newKey smaller than
oldKey. Can we have a simpler solution than if we have to support general update cases?
Hint: Use lazy deletion, we will use this technique in our Dijkstra’s code in Section 4.4.3.

Exercise 2.3.1.8*: Is there a better way to implement a Priority Queue if the keys are all
integers within a small range, e.g., [0..100]? We are expecting an O(1) enqueue and dequeue
performance. If yes, how? If no, why? What if the range is just [0..1]?
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2.3.2 Hash Table

Library:
C++ STL unordered map/unordered set/unordered multimap/unordered multiset.
Java HashMap/HashSet/HashTable.
Python dict/set (or curly braces {}).
OCaml Hashtbl module.

Table ADT and Quick Review of Hash Table Concepts

Hash Table35 is an e�cient non-linear data structure to implement Table Abstract Data
Type (ADT) that require very fast (expected) O(1) insertion, search/retrieval/update, or
removal of keys if the keys do not have to be sorted.

The main components of a Hash Table are a good hash function and a good collision
resolution mechanism. Designing a well-performing O(1) hash function is often tricky for
complex objects36 like a pair, a tuple, a class, etc, but C++ (since C++11), Java, Python,
and OCaml already have relatively good support if the data/keys are just standard data
types like integers or strings. Unless the hash function is perfect (no collision), we may have
collision, i.e., two (or more) distinct keys hashed into the same index. This has to be resolved.
There are several well-known collision resolution mechanism ranging from Open Addressing
techniques (e.g., Double Hashing) and Closed Addressing technique (e.g., Separate Chaining,
currently shown at Figure 2.5).

Figure 2.5: Search of Key 7 in a Hash Table with m = 11 and using Separate Chaining

If you are interested to explore more details about the basic ideas of Hash Table, please visit
VisuAlgo, Hash Table visualization, that shows visualizations of several Hash Table collision
resolution techniques. The URL for the Hash Table visualization is shown below.

Visualization: https://visualgo.net/en/hashtable

Library Solutions

In competitive programming, we normally do not write our own Hash Table, but rather rely
on library solutions. C++ (since C++ 11) has unordered set and unordered map. The
di↵erence between these two libraries is simple: the C++ STL unordered map stores key
! satellite37 data pairs whereas the C++ STL unordered set only stores the keys. We

35Note that questions about hashing frequently appear in interviews for IT jobs.
36But if those complex objects are still easy to be compared, we can use balanced BST (see Section 2.3.3).
37Satellite data refers to any data which you want to store in your data structure. Satellite data is not

part of the structure of the data structure, its associated key is. Satellite data moves together with its key
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use unordered map when we need to map keys to satellite data and the keys do not have to
be ordered. We use unordered set when we need an e�cient check for the existence of a
certain key and the keys do not have to be ordered.

Typical C++ STL unordered set operations include insert(), find(), count() (usu-
ally to test if the frequency of a key is 0 (does not exist) or 1 (exist) in the (unordered)
set38), erase(), and clear(). Typical C++ STL unordered map operations are similar to
unordered set operations but we will frequently use the [] operator.

It is true that C++ STL map or set that will be discussed in Section 2.3.3 is usually
already fast enough as the typical input size of (programming contest) problems is usually
not more than 1M . Within these bounds, the expected39 O(1) performance of Hash Tables
and O(log n) performance for balanced BSTs where n  1M do not di↵er by much. However,
for a very time critical problem where the ordering of the keys is not important, the small
(O(log n) factor) runtime saving o↵ered by Hash Table is still useful. For illustration, just
by changing the library used from set<int> into unordered set<int> for UVa 11849 -
CD (also available at Kattis - cd) solution shaves approximately half the runtime from ⇡
0.8s down to ⇡ 0.4s.

Note that for most programming contest problems, the input constraints are clearly
specified. Thus we will (roughly) know the maximum number of items M that will ever
be in the Hash Table at the same time. Therefore, we can pre-set the initial size of Hash
Table to be approximately40 2⇥M to reduce the amount of ‘re-hashing’ and keep the load
factor of the Hash Table to be in the ‘optimum range’. In C++, we use the alternative
constructor of unordered set/unordered map that specifies the initial bucket count or
call the reserve(count) method.

Direct Addressing Table

We do not always have to use a complex Hash Table data structure. Some programming
contest problems can already be solved using the simplest form of Hash Tables: ‘Direct
Addressing Table’ (DAT).

DAT can be considered as a Hash Table where the keys themselves are the indices, or
where the ‘hash function’ is the identity function (no collision). For example, we may need
to assign all possible ASCII characters [0..255] to integer key values, e.g., ‘a’ ! 3, ‘W’ !
10, . . . , ‘I’ ! 13, etc. For this purpose, we do not need the C++ STL map, unordered map,
or any form of hashing as the key itself (the value of the ASCII character [0..255]) is unique
and already su�cient to determine the appropriate index in an array of size 256.

Common cases where DAT technique may be applicable are when the keys are English
alphabets (lowercase/UPPERCASE only [0..25] or both [0..51]), DNA characters (‘A’, ‘C’,
‘G’, and ‘T’), digits (binary [0..1], octal [0..7], decimal [0..9], or hexadecimal [0..15]), day of
a week ([0..6])/month ([0..28/29/30/31])/year ([0..364/365]), and a few others that you will
encounter as you solve more programming problems involving this special data structure.

In the sample code, we demonstrate a few of these Hash Table operations.

Source code: ch2/nonlineards/unordered map unordered set.cpp|java|py|ml

when the key is re-organized by the underlying data structure. An analogy: key is planet earth and satellite
data is moon that orbits the earth; both earth and moon move together when earth orbits the sun.

38There is no duplicate element in a set. If we need to cater for duplicate elements, then we should use
the C++ STL unordered multimap or unordered multiset instead.

39The worst case performance of Hash Table operations is O(n) but it is very di�cult to create test cases
that cause this worst case performance, especially when one sets good initial Hash Table size.

40The required extra table size to improve typical Hash Table performance depends on the implementation.
Java HashMap has default load factor bound of 0.75, i.e., if we know the maximum number of items M , we
shall set initial size of Hash Table to be ⇡ 1.33⇥M .
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Exercise 2.3.2.1: We will not discuss the basics of Hash Table collision resolution tech-
niques and operations in this book. Instead, we will use a series of questions to verify your
understanding of Hash Table concepts, especially the Closed Addressing (Separate Chain-
ing) technique that is likely used inside C++ STL unordered map/unordered set. You are
encouraged to use https://visualgo.net/en/hashtable when attempting this exercise.

1. With Figure 2.5 as the current Hash Table with m = 11 cells/slots (the hash function
is assumed to be typical one, i.e., h(key) = key%m) and n = 13 keys, display the steps
taken by Search(8), Search(35), Search(77).

2. After answering question 1 above, display the steps taken by Insert(77), Insert(13),
Insert(19), one after another.

3. After answering question 1+2 above, display the steps taken by Remove(9), Remove(7),
Remove(13), one after another.

Exercise 2.3.2.2: Someone suggested that it is possible to store the key ! value pairs in
a sorted array of structs so that we can use the O(log n) binary search. Is this approach
feasible? If no, what is the issue?

Exercise 2.3.2.3: There are M strings. N of them are unique (N  M). Which non-linear
data structure discussed in this section should you use if you have to index (label) these M
strings with integers from [0..N-1]? The indexing criteria is as follows: The first string
must be given an index of 0; The next di↵erent string must be given index 1, and so on.
However, if a string is re-encountered, it must be given the same index as its earlier copy!
One application of this task is in constructing the connection graph from a list of city names
given as strings and a list of flights between these cities (see Section 2.4.1). One possible
way to do this is to map these city names into integer indices as asked in this exercise.

Exercise 2.3.2.4*: We have mentioned that by using the 10 characters longer C++ STL
unordered set<int> instead of C++ STL set<int>, we managed to approximate halve
the runtime needed to solve Kattis - cd (also available at UVa 11849 - CD) without changing
anything else. Please do similar experiments with other Online Judge problems where the
keys do not need to be ordered and are of simple data type like integers or strings that already
have e�cient built-in hash functions. Do you experience similar runtime improvements?

Exercise 2.3.2.5*: In this section, we have mentioned that hashing a complex object is
tricky. However, there is an easy way to hash a pair of integers that represents a cell (r, c)
in a 2D array of size N ⇥M . The question: how to hash a pair of integers?

Profile of Data Structure Inventor

John William Joseph Williams (1929-2012) was a British-born Computer Scientist who
invented Heap Sort and the associated Binary Heap data structure in 1964.
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2.3.3 Balanced Binary Search Tree (bBST)

Library:
C++ STL map/set/multiset/multimap.
Java TreeMap/TreeSet.
No built-in support for balanced BST in Python yet as of year 2020.
OCaml Map/Set module (immutable).

Quick Review

Binary Search Tree (BST) is another way to organize data in a tree structure. In each
subtree rooted at x, the following BST property holds: items on the left subtree of x are
smaller than x and items on the right subtree of x are greater than (or equal to) x. This
is essentially an application of the Divide and Conquer strategy (also see Section 3.3). Or-
ganizing the data like this (see Figure 2.6) allows for O(log n) search(key), insert(key),
findMin()/findMax(), successor(key)/predecessor(key), and remove(key) operations
since in the worst case, only O(log n) operations are required in a root-to-leaf scan (see
[5, 3, 48, 9] for details). However, this only holds if the BST is balanced.

Figure 2.6: Example of Searching a Key (7) in a balanced BST (bBST)

Balanced Binary Search Tree (bBST) and Its Library Solutions

Implementing bug-free balanced BSTs such as the Adelson-Velskii Landis (AVL)41 or Red-
Black (RB)42 Trees is a tedious task and is di�cult to achieve in a time-constrained con-
test environment (unless we have prepared a code library beforehand, see Section 2.3.4).
Fortunately, C++ STL has43 map and set (Java has TreeMap and TreeSet) which are
usually implementations of the RB Tree that guarantee major BST operations like inser-
tions/searches/removals are done in O(log n) time44. By mastering these two C++ STL
libraries (or Java APIs), we can save a lot of precious coding time during contests!

41The AVL tree was the first self-balancing BST to be invented. AVL trees are essentially traditional
BSTs with an additional property: The heights of the two subtrees of any vertex in an AVL tree can di↵er
by at most one. Rebalancing operations (rotations) are performed (when necessary) during insertions and
deletions to maintain this invariant property, hence keeping the tree roughly balanced.

42The Red-Black tree is another self-balancing BST, in which every vertex has a color: red or black. In
RB trees, the root vertex, all leaf vertices, and both children of every red vertex are black. Every simple
path from a vertex to any of its descendant leaves contains the same number of black vertices. Throughout
insertions and deletions, an RB tree will maintain all these invariants to keep the tree balanced.

43If there are duplicate elements, we may want to use the C++ STL multimap or multiset instead.
44Only use map/set only if we really need the keys to be sorted, otherwise we shall use

unordered map/unordered set by default. This is because the time complexity for map/set operations
(insertions/searches/removals) is O(log n), while it is expected O(1) for unordered map/unordered set un-
less severe hash collisions occur, in which it becomes O(n). But for most practical usage in programming
contest problems, the probability of hash collision occurring is relatively low.
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Typical C++ STL map/set operations are similar to unordered map/unordered set
operations, but this time we can perform range operations like lower bound, upper bound,
and iterating through the elements in sorted order.

Tree Sort

As the keys in a bBST are ordered, enumerating the keys from the smallest to largest will
yield the sorted ordering of the keys45. For some programming problems that require the out-
put to be unique and in sorted order, we can use C++ STL set (or map) to store the output,
and then enumerate all keys in the set that will be ‘auto-sorted’ by the bBST inside C++
STL set. This is an overkill solution (unless there are frequent updates/insertions/deletions
of the keys) as storing the output in a vector and then sort it before displaying the output
(removing adjacent duplicates for uniqueness) is also possible (and faster).

If you are interested to explore more details about Binary Search Tree or its balanced
variant: AVL Tree, please visit VisuAlgo, Binary Search Tree visualization, that shows
visualization of BST/AVL Tree and their operations. The URL for the BST visualization
and source code example (excluding Python) are shown below.

Visualization: https://visualgo.net/en/bst

Source code: ch2/nonlineards/map set.cpp|java|ml

Using bBST as a Powerful Priority Queue ADT

A bBST (e.g., C++ STL set/multiset) can be used to implement an e�cient Priority
Queue ADT discussed earlier in Section 2.3.1. We can enqueue a new key by inserting that
key into a bBST (insert(key)) in O(log n) time. We can identify the item with the smallest
key (priority) by finding the minimum/leftmost item in the bBST (begin()). As a bonus,
we can also identify the largest key of the same bBST by finding the maximum/rightmost
item in the bBST (rbegin()). This essentially makes a bBST to be an e�cient dynamic
Min-Max Priority Queue, more powerful46 than the standard Priority Queue ADT.

Now with this revelation, we can now implement the two extra Priority Queue ADT op-
erations mentioned in Section 2.3.1 e�ciently. The UpdateKey(oldkey, newkey) operation
is now remove(oldkey) in bBST and then insert(newKey) into bBST. This is O(2⇥ log n),
which is still O(log n). The RemoveKey(key) operation where key is any key in the Priority
Queue, is simply remove(key) in bBST, which is O(log n).

Order Statistics Tree: rank(v) and select(k) Operations

A bBST can be augmented (add extra information at each vertex) so that we can sup-
port two more operations rank(v) and select(k) operations. The operation rank(v) first
search the key v inside the bBST and output its rank among all the keys in the bBST (usu-
ally 1-based, with rank(the-smallest-key) = 1 and rank(the-largest-key) = n). The
corresponding operation select(k) retrieves the key with rank k in the bBST (select(1)
= the-smallest-key and select(n) = the-largest-key).

However, there is a small drawback. If we use the library implementations (e.g., C++
STL set/map), it becomes di�cult or impossible to augment (add extra information to) the
bBST. We will discuss this problem in more details in Section 2.3.4.

45Note that the content of a Hash Table discussed in Section 2.3.2 is (usually) jumbled and iterating over
the keys in Hash Table will not yield a meaningful order unless our intention is really to process all keys.

46One drawback is that C++ STL set is a few constant factor slower (but mostly negligible in most
programming contest problems) than C++ STL priority queue due to its more general functionalities.
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Exercise 2.3.3.1: We will not discuss the basics of BST operations in this book. Instead, we
will use a series of sub-tasks to verify your understanding of BST-related concepts. We will
use Figure 2.6 as an initial reference in all sub-tasks except sub-task 2. You are encouraged
to use https://visualgo.net/en/bst when attempting this exercise.

1. Display the steps taken by search(71), search(7), and then search(22).

2. From an empty BST, do insert(15), insert(4), insert(50), insert(2), insert(7),
insert(23), insert(71), insert(10), insert(65) one by one. What do we have?

3. Display the steps taken by findMin() (and findMax()).

4. Indicate the inorder traversal of this BST. Is the output sorted?

5. Indicate the preorder, postorder, and level order traversals of this BST.

6. Display the steps taken by successor(50), successor(10), and successor(71).
Similarly for predecessor(23), predecessor(7), and predecessor(71).

7. Display the steps taken by remove(65) (a leaf), remove(71) (an internal vertex with
one child), and remove(15) (an internal vertex with two children) one after another.

Exercise 2.3.3.2: Which non-linear data structure should you use if you have to support
the these dynamic operations: 1) many insertions, 2) many deletions, and 3) many requests
for the data in sorted order? What if the sorted criteria is dropped from requirement 3?

Exercise 2.3.3.3*: Suppose you are given a reference to the root R of a binary tree T
containing n vertices. You can access a vertex’s left, right and parent vertices as well as
its key through its reference. Solve each of the following tasks below with the best possible
algorithms that you can think of and analyze their time complexities. Let’s assume the
following constraints: 1  n  200K so that O(n2) solutions are theoretically infeasible.

1. Check if T is a BST.

2*. Output the items in T that are within a given range [a..b] in ascending order.

3*. Output the contents of the leaves of T in descending order.

Exercise 2.3.3.4*: The inorder traversal (also see Section 4.6.2) of a standard (not neces-
sarily balanced) BST is known to produce the BST’s item in sorted order and runs in O(n).
Does the code below also produce the BST items in sorted order? Can it be made to run in
a total time of O(n) instead of O(log n+ (n-1)⇥ log n) = O(n log n)? If possible, how?

int x = findMin(); cout << x << "\n";
for (int i = 1; i < n; ++i) { // is this O(n log n)?

int x = successor(x); cout << x << "\n";
}

Exercise 2.3.3.5*: Knowing the versatility of balanced BST (bBST), should we use bBST
for all our key to value mapping, sorting (use Tree Sort), and Priority Queue needs?
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2.3.4 Order Statistics Tree

Two Related Problems

Selection problem is the problem of finding the k-th smallest47 element of an array of n ele-
ments. Another name for selection problem is order statistics. Thus the minimum (smallest)
element is the 1-st order statistic (1-based indexing), the maximum (largest) element is the
n-th order statistic, and the median element is the n

2 order statistic (there are 2 medians if
n is even but we can combine the two cases as (A[n/2] + A[(n-1)/2]) / 2).

The opposite of Selection problem is Ranking problem. If the k-th smallest element in
an array is v, i.e., Select(k) = v, then the ranking of v is k, i.e., Rank(v) = k. Both Select
and Rank operations are supported in the Order Statistics Tree data structure (that can be
implemented in several ways).

This selection problem is used as a motivating example in the opening of Chapter 3 later.
Here, we first discuss the selection problem on static data and its solutions, before we present
the Order Statistics Tree that can solve both the selection and rank problems e�ciently.

Solution(s) for Selection Problem, static data

Special Cases: k = 1 and k = n

Searching for the minimum (k = 1) or maximum (k = n) element of an arbitrary array can
be done in n-1 comparisons: we set the first element to be the temporary answer, and then
we compare this temporary answer with the other n-1 elements one by one and keep the
smaller (or larger, depending on the requirement) one. Finally, we report the answer. ⌦(n)
comparisons is the lower bound, i.e., We cannot do better than this. While this problem
is easy for k = 1 or k = n, finding the other order statistics—the general form of selection
problem—is more di�cult.

O(n2) algorithm

A näıve algorithm to find the k-th smallest element is to this: find the smallest element,
‘discard’ it (e.g., by setting it to a ‘dummy large value’), and repeat this process k times.
When k is near 1 (or when k is near n), this O(kn) algorithm can still be treated as running
in O(n), i.e., we treat k as a ‘small constant’. However, the worst case scenario is when we
have to find the median (k = n

2 ) element where this algorithm runs in O(n2 ⇥ n) = O(n2).

O(n log n) algorithm

A better algorithm is to sort (that is, pre-process) the array first in O(n log n). Once the
array is sorted, we can find the k-th smallest element in O(1) by simply returning the content
of index k-1 (0-based indexing) of the sorted array. The main part of this algorithm is the
sorting phase. Assuming that we use a good O(n log n) sorting algorithm, this algorithm
runs in O(n log n) overall.

Expected O(n) algorithm

An even better algorithm for the selection problem is to apply Divide and Conquer paradigm.
The key idea of this algorithm is to use theO(n) Partition algorithm (the randomized version)
from Quick Sort as its sub-routine.

47Note that finding the k-th largest element is equivalent to finding the (n-k+1)-th smallest element.
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A randomized partition algorithm: RandPartition(A, l, r) is an algorithm to parti-
tion a given range [l..r] of the array A around a (random) pivot. Pivot A[p] is one of the
element of A where p 2 [l..r]. After partition, all elements < A[p] are placed before the
pivot and all elements � A[p] are placed after the pivot (see Figure 2.1). The final index of
the pivot q is returned. This randomized partition algorithm can be done in O(n).

After performing q = RandPartition(A, 0, n-1), all elements  A[q] will be placed
before the pivot and therefore A[q] is now in it’s correct order statistic, which is q+1. Then,
there are only 3 possibilities:

1. q+1 = k, A[q] is the desired answer. We return this value and stop.

2. q+1 > k, the desired answer is inside the left partition, e.g., in A[0..q-1].

3. q+1 < k, the desired answer is inside the right partition, e.g., in A[q+1..n-1].

This process can be repeated recursively on smaller range of search space until we find the
required answer. A snippet of C++ code that implements this algorithm is shown below.

int QuickSelect(int A[], int l, int r, int k) { // expected O(n)
if (l == r) return A[l];
int q = RandPartition(A, l, r); // also O(n)
if (q+1 == k)

return A[q];
else if (q+1 > k)

return QuickSelect(A, l, q-1, k);
else

return QuickSelect(A, q+1, r, k);
}

Source code: ch2/nonlineards/QuickSelect.cpp|java|py|ml

This QuickSelect algorithm runs in expected O(n) time and very unlikely to run in its worst
case O(n2) as it uses randomized pivot at each step. The full analysis involves probability
and expected values. Interested readers are encouraged to read other references for the full
analysis e.g., [5].

A simplified (but not rigorous) analysis is to assume48 QuickSelect divides the array into
two equal-sized subarrays at each step and n is a power of two. Thus it runs RandPartition
in O(n) for the first round, in O(n2 ) in the second round, in O(n4 ) in the third round and
finally O(1) in the 1 + log2 n round. The cost of QuickSelect is mainly determined by the
cost of RandPartition as all other steps of QuickSelect is O(1). Therefore the overall cost
is O(n+ n

2 + n
4 + ...+ n

n) = O(n⇥ (11 +
1
2 +

1
4 + ...+ 1

n))  O(2n) = O(n).

Library solution for the expected O(n) algorithm

C++ STL has function nth element in <algorithm>. This nth element implements the
expected O(n) algorithm as shown above. However as of year 2020, we are not aware of
Java/Python/OCaml equivalent for this function.

Note that both QuickSelect and nth elementmay actually swap elements in the original
array A into its “more sorted” form (due to the usage of RandPartition). Sometimes, this
is not the desired side e↵ect, thus we need to copy the original array A in O(n) first into
another array.

48There is an extension of this algorithm: worst-case O(n) selection algorithm that do partitioning around
an approximate median of the current subarray. Interested readers can check [5].
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Order Statistics Tree, dynamic data

O(n log n) pre-processing and O(log n) algorithm using balanced BST

All solutions presented for the selection problem earlier assume that the given array is
static—unchanged for each query of the k-th smallest element. However, if the content of
the array is frequently modified, i.e., a new element is added, an existing element is removed,
or the value of an existing element is changed, the solutions above become ine�cient.

When the underlying data is dynamic, we need to use a balanced Binary Search Tree (see
Section 2.3). First, we insert all n elements into a balanced BST in O(n log n) time. We
also augment (add information) about the size of each sub-tree rooted at each vertex so that
we can query the size of any sub-tree in O(1) despite any update (insertion/deletion). This
way, we can find the k-th smallest element in O(log n) time by comparing k with q—the size
of the left sub-tree of the root:

1. If q+1 = k, then the root is the desired answer. We return this value and stop.

2. If q+1 > k, the desired answer is inside the left sub-tree of the root.

3. If q+1 < k, the desired answer is inside the right sub-tree of the root and we are now
searching for the (k-q-1)-th smallest element in this right sub-tree. This adjustment of
k is needed to ensure correctness.

This process—which is similar with the expectedO(n) algorithm for static selection problem—
can be repeated recursively until we find the required answer. As checking the size of a
sub-tree can be done in O(1) if we have properly augment the BST, this overall algorithm
runs at worst in O(log n) time, from root to the deepest leaf of a balanced BST.

Now with this sub-tree size augmentation, we can also solve the ranking problem easily.
To determine the rank of a given value v, we search for v in the balanced BST and perform
the following:

1. If v is equal to the root of current sub-tree (we found v), then the rank is the size of
left sub-tree plus one (the root).

2. If v is smaller than the root of the current sub-tree, then the rank of v can be determined
by continuing the search on the left sub-tree.

3. If v is greater than the root of the current sub-tree, then the rank of v can be determined
by continuing the search on the right sub-tree and then adding the size of left sub-tree
plus one (the root) to the final answer.

However, as we need to augment a balanced BST, this algorithm cannot use built-in C++
STL <map>/<set> (or Java TreeMap/TreeSet) as these library code cannot be augmented.
Therefore, we need to write our own balanced BST routine (e.g., AVL tree or Red Black
Tree, etc—all of them take some time to code — see our example code) and therefore such
selection problem and/or ranking problem on dynamic data can be quite painful to solve if
you are not aware of the alternative solutions: Fenwick Tree (see Section 2.4.3) or the next
pbds solution.

Visualization: https://visualgo.net/en/avl

Source code: ch2/nonlineards/AVL.cpp|java
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Policy-Based Data Structures (pbds), C++ only

The gnu g++ compiler also supports policy-based data structures (pbds) that are not part
of the C++ standard library (hence their relative obscurity compared to the more popular
STL). The one that we will use to solve the selection and ranking problems easily. We will
explain this library solution using an example code:

#include <bits/stdc++.h>
using namespace std;

#include <bits/extc++.h> // pbds
using namespace __gnu_pbds;
typedef tree<int, null_type, less<int>, rb_tree_tag,

tree_order_statistics_node_update> ost;

int main() {
int n = 9;
int A[] = { 2, 4, 7,10,15,23,50,65,71}; // as in Chapter 2
ost tree;
for (int i = 0; i < n; ++i) // O(n log n)

tree.insert(A[i]);
// O(log n) select
cout << *tree.find_by_order(0) << "\n"; // 1-smallest = 2
cout << *tree.find_by_order(n-1) << "\n"; // 9-smallest/largest = 71
cout << *tree.find_by_order(4) << "\n"; // 5-smallest = 15
// O(log n) rank
cout << tree.order_of_key(2) << "\n"; // index 0 (rank 1)
cout << tree.order_of_key(71) << "\n"; // index 8 (rank 9)
cout << tree.order_of_key(15) << "\n"; // index 4 (rank 5)
return 0;

}

Source code: ch2/nonlineards/pbds.cpp

Exercise 2.3.4.1*: The example code above assumes that the tree contains distinct integers.
What should we do if there are duplicates?

Profile of Data Structure Inventors

Rudolf Bayer (born 1939) has been Professor (emeritus) of Informatics at the Technical
University of Munich. He invented the Red-Black (RB) tree used in the C++ STL map/set.

Georgii Adelson-Velskii (1922-2014) was a Soviet mathematician and computer scientist.
Along with Evgenii Mikhailovich Landis, he invented the AVL tree in 1962.

Evgenii Mikhailovich Landis (1921-1997) was a Soviet mathematician. The name of the
AVL tree is an abbreviation of the two inventors: Adelson-Velskii and Landis himself.
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Programming exercises solvable with library of non-linear data structures:

a. Priority Queue

1. Entry Level: Kattis - numbertree * (not a direct priority queue problem, but
the indexing strategy is similar to binary heap indexing)

2. UVa 01203 - Argus * (LA 3135 - Beijing04; priority queue simulation)

3. UVa 11997 - K Smallest Sums * (sort the lists; merge two sorted lists
using priority queue to keep the K-th smallest sum every time)

4. UVa 13190 - Rockabye Tobby * (similar to UVa 01203; use PQ; use drug
numbering id as tie-breaker)

5. Kattis - jugglingpatterns * (PQ simulation; reading comprehension)

6. Kattis - knigsoftheforest * (PQ simulation after sorting the entries by year)

7. Kattis - stockprices * (PQ simulation; both max and min PQ)

Extra Kattis: alehouse, clinic, guessthedatastructure, janeeyre, rationalse-
quence2, rationalsequence3.

Also see the usage of priority queue for some sorting problems (see Sec-
tion 2.2.1), greedy problems (see Section 3.4), topological sorts (see Section
4.2.2), Kruskal’s49 (see Section 4.3.2), Prim’s (see Section 4.3.3), Dijkstra’s
(see Section 4.4.3), and the A* Search algorithms (see Book 2).

b. Direct Addressing Table (DAT), ASCII

1. Entry Level: UVa 00499 - What’s The Frequency ... * (ASCII keys)

2. UVa 10260 - Soundex * (DAT for soundex A-Z code mapping)

3. UVa 11340 - Newspaper * (ASCII keys)

4. UVa 11577 - Letter Frequency * (A-Z keys)

5. UVa 12626 - I (love) Pizza * (A-Z keys)

6. Kattis - alphabetspam * (count the frequencies of lowercase, uppercase, and
whitespace characters)

7. Kattis - quickbrownfox * (pangram; frequency counting of 26 alphabets)

Extra UVa: 00895, 10008, 10062, 10252, 10293, 10625, 12820.

c. Direct Addressing Table (DAT), Others

1. Entry Level: Kattis - princesspeach * (DAT; linear pass)

2. UVa 01368 - DNA Consensus String * (for each column j, find the
highest frequency character among all j-th column of all m DNA strings)

3. UVa 11203 - Can you decide it ... * (count frequency of x/y/z)

4. UVa 12650 - Dangerous Dive * (use 1D Boolean array for each person)

5. Kattis - bookingaroom * (only 100 rooms; use 1D Boolean array)

6. Kattis - busnumbers * (only 1 000 bus numbers; use 1D Boolean array)

7. Kattis - freefood * (only 365 days in a year)

Extra UVa: 00755.

Extra Kattis: floppy, hardware, relocation.

49This is another way to implement the edge sorting in Kruskal’s algorithm. Our (C++) implementation
shown in Section 4.3.2 uses vector + sort pre-processing step instead of priority queue (a heap sort).
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d. Hash Table (set)

1. Entry Level: Kattis - cd * (unordered set is faster than set here; or use
modified merge as the input is sorted; also available at UVa 11849 - CD)

2. UVa 10887 - Concatenation of ... * (Use O(MN) algorithm; concatenate
all pairs of strings; put them in an unordered set; report set size)

3. UVa 12049 - Just Prune The List * (manipulate unordered multiset)

4. UVa 13148 - A Giveaway * (we can store all precomputed answers—
which are given—into unordered set)

5. Kattis - esej * (use unordered set to prevent duplicate)

6. Kattis - greetingcard * (use unordered set; good question; major hint: only
12 neighbors)

7. Kattis - shiritori * (linear pass; use unordered set to keep track of words
that have been called)

Extra Kattis: bard, boatparts, deduplicatingfiles, engineeringenglish, every-
where, icpcawards, iwannabe, keywords, nodup, oddmanout, pizzahawaii, proofs,
securedoors, whatdoesthefoxsay.

e. Hash Table (map), Easier

1. Entry Level: Kattis - recount * (use unordered map; frequency counting)

2. UVa 00902 - Password Search * (read char by char; count word freq)

3. UVa 11348 - Exhibition * (use unordered map and unordered set to
count frequency; check uniqueness)

4. UVa 11629 - Ballot evaluation * (use unordered map)

5. Kattis - competitivearcadebasketball * (use unordered map)

6. Kattis - conformity * (use unordered map to count frequencies of the sorted
permutations of 5 ids; also available at UVa 11286 - Conformity)

7. Kattis - grandpabernie * (use unordered map plus (sorted) vector)

Extra UVa: 00484, 00860, 10374, 10686, 12592.

Extra Kattis: babelfish, costumecontest, election2, haypoints, marko, metapro-
gramming, rollcall, variablearithmetic.

f. Hash Table (map), Harder

1. Entry Level: Kattis - conversationlog * (use combo DS: unordered map, set,
plus (sorted) vector)

2. UVa 00417 - Word Index * (generate all words with brute force up to
depth 5 and give them appropriate indices; add to unordered map)

3. UVa 10145 - Lock Manager * (use unordered map and unordered set)

4. UVa 11860 - Document Analyzer * (use unordered set to get unique
strings and use unordered map with linear scan to get the answer)

5. Kattis - addingwords * (use unordered map)

6. Kattis - awkwardparty * (use unordered map to running max and running
min; report the largest di↵erence)

7. Kattis - basicinterpreter * (the harder version of Kattis - variablearithmetic;
tedious; be careful; print string inside double quotes verbatim)

Extra UVa: 10132, 11917.

Extra Kattis: iforaneye, magicalcows, minorsetback, parallelanalysis, recenice,
snowflakes.
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g. Balanced BST (set)

1. Entry Level: UVa 10815 - Andy’s First Dictionary * (use set and
string; sorted output)

2. UVa 00978 - Lemmings Battle * (simulation; use multiset)

3. UVa 11136 - Hoax or what * (use multiset)

4. UVa 13037 - Chocolate * (we can use set or a sorted array)

5. Kattis - bst * (simulate special BST [1..N ] insertions using set)

6. Kattis - candydivision * (complete search from 1 to
p
N ; insert all divisors

into set for automatic sorting and elimination of duplicates)

7. Kattis - compoundwords * (use set extensively; iterator)

Extra UVa: 00501, 11062.

Extra Kattis: caching, ministryofmagic, missinggnomes, orphanbackups, palin-
dromicpassword, raceday, raidteams.

Also check Sorting in Section 2.2.1.

h. Balanced BST (map)

1. Entry Level: Kattis - doctorkattis * (Max Priority Queue with frequent (in-
creaseKey) updates; use map)

2. UVa 10138 - CDVII * (use map to map plates to bills, entrance time, and
position; sorted output)

3. UVa 11308 - Bankrupt Baker * (use map and set)

4. UVa 12504 - Updating a ... * (use map; string to string; order needed)

5. Kattis - administrativeproblems * (use several maps as the output (of spy
names) has to be sorted; be careful of corner cases)

6. Kattis - kattissquest * (use map of priority queues; other solutions exist)

7. Kattis - srednji * (go left and right of B; use fast data structure like map to
help determine the result fast)

Extra UVa: 00939, 10420.

Extra Kattis: baconeggsandspam, cakeymccakeface, fantasydraft, hardwood-
species, notamused, opensource, problemclassification, warehouse, zoo.

Also check Sorting in Section 2.2.1.

i. Order Statistics Tree

1. Entry Level: UVa 10909 - Lucky Number * (involves dynamic selection;
use pb ds, Fenwick Tree, or augment balanced BST)

2. Kattis - babynames * (dynamic rank problem; use two pb ds)

3. Kattis - continuousmedian * (dynamic selection problem; specifically the
median values; pb ds helps)

4. Kattis - cookieselection * (map large integers to up to 600K integers; use
pb ds or Fenwick Tree and the select(median) operation of Fenwick Tree)

5. Kattis - gcpc * (dynamic rank problem; pb ds helps)
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2.4 DS with Our Own Libraries

As of year 2020, important data structures shown in this section do not have built-in support
yet in C++ STL, Java API, or Python/OCaml Standard Library. Thus, to be competitive,
contestants should prepare bug-free implementations of these data structures. In this section,
we discuss the key ideas and example implementations of these data structures.

2.4.1 Graph

Graph is a pervasive structure which appears in many Computer Science problems. A
graph (G = (V,E)) in its basic form is simply a set of vertices (V ) and edges (E; storing
connectivity information between vertices in V ). Later in Chapter 3, 4, 8, and 9, we will
explore many important graph problems and algorithms. To prepare ourselves, we will first
discuss three basic ways (there are a few other rare graph data structures later) to represent
a graph G with V vertices and E edges in this book50.

Figure 2.7: Graph Data Structure Visualization, Undirected/Unweighted Graph

The Adjacency Matrix AM

Usually in the form of a 2D array (see Figure 2.7, bottom left).
Native support in C++ STL and Java API.
We use list of lists in Python/t array array in OCaml.

In (competitive programming) problems involving graphs, the number of vertices V is usually
known. Thus, if V is small enough, we can build a ‘connectivity table’ by creating a static
2D array (a square matrix): int AM[V ][V ]. This has an O(V 2) space51 complexity. For an
unweighted graph, set AM[u][v] to a non-zero value (usually 1) if there is an edge between
vertex u-v and zero otherwise52. For a weighted graph, set AM[u][v] = weight(u, v) if
there is an edge between vertex u-v with weight(u, v) and zero otherwise. (Standard)

50The most appropriate notation for the cardinality of a set S is |S|. However, in this book, we will often
overload the meaning of V or E to also mean |V | or |E|, depending on the context.

51We di↵erentiate between the space and time complexities of data structures. The space complexity is
an asymptotic measure of the memory requirements of a data structure whereas the time complexity is an
asymptotic measure of the time taken to run a certain algorithm or an operation on the data structure.

52We assume that there is no 0-weighted edge in a typical input graph. Simply use alternative non-used
value if such 0-weighted edge exists in your graph.
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Adjacency Matrix cannot be used to store a weighted multigraph53 that allows multiple
edges between the same pair of vertices. For a simple graph without any self-loop, the main
diagonal of the matrix contains only zeroes, i.e., AM[u][u] = 0, 8u 2 [0..V-1].

An Adjacency Matrix is a good choice if the connectivity between two vertices in a small
dense graph is frequently required. However, it is not recommended for large sparse graphs
as it would require too much space (O(V 2)) and there would be many blank (zero) cells in
the 2D array. In a competitive setting, it is usually infeasible to use Adjacency Matrices
when the given V is larger than ⇡ 5000. Another drawback of Adjacency Matrix is that it
also takes O(V ) time to enumerate the list of neighbors of a vertex u—an operation common
to many graph algorithms—even if that vertex u only has a handful of neighbors. A more
compact and e�cient graph representation is the Adjacency List discussed below.

The Adjacency List AL

Usually in the form of a vector of vector of pairs (see Figure 2.7, bottom middle).
Using the C++ STL: vector<vii> AL, with vii defined as in:
typedef pair<int, int> ii; typedef vector<ii> vii; // data type shortcuts
Using the Java API: ArrayList<ArrayList<IntegerPair>> AL.
IntegerPair is a simple Java class that contains a pair of integers like pair<int, int>.
Using Python: AL = defaultdict(list), the values in list are grouped by pairs.
Using OCaml: (int * int) list array.

In an Adjacency List AL, we have a vector of vector of pairs, storing the list of neighbors
of each vertex u as ‘edge information’ pairs. Each pair contains two pieces of information,
the index of the neighbouring vertex and the weight of the edge. If the graph is unweighted,
simply store the weight as 0, 1, or drop the weight attribute54 entirely. The space complexity
of Adjacency List is O(V +E) because if there are E bidirectional edges in a (simple) graph,
this Adjacency List will only store 2E ‘edge information’ pairs. As E is usually much
smaller than V ⇥ (V �1)/2 = O(V 2)—the maximum number of edges in a complete (simple)
graph, Adjacency Lists are often more space-e�cient than Adjacency Matrices. Note that
Adjacency List can be used to (easily) store a multigraph.

With Adjacency Lists, we can also enumerate the list of neighbors of a vertex v e�ciently.
If v has k neighbors, the enumeration will require O(k) time. Usually–although not always–
the neighbors are listed in ascending vertex numbers. Since this is one of the most common
operations in most graph algorithms, it is advisable to use Adjacency Lists as your first
choice of graph representation. Unless otherwise stated, most graph algorithms discussed in
this book use the Adjacency List.

The Edge List EL

Usually in the form of a vector of triples (see Figure 2.7, bottom right).
Using the C++ STL: vector<tuple<int, int, int>> EL.
Using the Java API: Vector<IntegerTriple> EL.
IntegerTriple is a class that contains a triple of integers like tuple<int, int, int>.
Using Python: EL = [].
The edges are tuples55, usually (w, u, v), i.e., weight w plus the two endpoints u and v.
Using OCaml: (int * int * int) list.

53Most programming problems involving graph deal with simple graphs. Simple graph has no self-loop or
multiple edges between the same pair of vertices. These two properties simplify most graph problems.

54To simplify discussion, we will always assume that the second attribute exists in all graph implementa-
tions in this book although it is not always used. Readers are free to customize these implementations.

55If the graph is unweighted, you can drop w.
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In an Edge List EL, we store a list of all E edges, usually in some sorted order. For directed
graphs, we store a bidirectional edge twice, one for each direction. The space complexity
is O(E). This graph representation is very useful for Kruskal’s algorithm for MST (Section
4.3.2) where the collection of undirected edges need to be sorted56 by ascending (or non-
decreasing) weight. However, storing graph information in Edge List complicates many
graph algorithms that require the enumeration of edges incident to a vertex.

If you are interested to explore more details about these three classic Graph Data Struc-
tures, please visit VisuAlgo, Graph Data Structures visualization, that shows visualiza-
tions of Adjacency Matrix, Adjacency List, and Edge List for any (small) input graph,
be it directed or undirected and weighted or unweighted. In that visualization, we pro-
vide many example graphs of varying properties (undirected/directed, unweighted/weighted,
tree/bipartite/DAG/complete, sparse/dense, etc). Many of these example graphs are also
used elsewhere in this book. The URL for the Graph Data Structures visualization and
source code example are shown below.

Visualization: https://visualgo.net/en/graphds

Source code: ch2/ourown/graph ds.cpp|java|py|ml

Vertex Labels that are not 2 [0..V -1]

So far, we assume that all vertices are labeled nicely, i.e., labeled with integer indices in a
nice range of [0..V -1]. If the vertices of the graph are labeled with strings instead, e.g., a
graph of flight connections that connect two cities identified by their names (two strings),
then we need to do more work.

The first idea is to use unordered map to map those string labels into integers in range
[0..V -1] (see Exercise 2.3.2.3), and then proceed as usual.

But we can also use unordered map<string, vector<string>> AL. This implemen-
tation, albeit shorter to code, is slightly slower than working with pure integer indices.

Storing Special Graphs

When the graphs to be stored are special (details in Section 4.6), we may be able to use a
simpler graph data structure to store them. Below, we list down a few:

1. The graph is an unweighted rooted tree (see Section 2.4.2 and Section 4.6.2).
One of the simplest way to store an unweighted tree structure is like the one used in
Union-Find Disjoint Sets data structure in Section 2.4.2 and DFS/BFS/MST/SSSP
spanning tree in Chapter 4. Vertex i remembers just one information, its parent, i.e.,
p[i]. Thus, we only need a single array p of size V to store the unweighted tree.

2. The graph is a complete binary tree (with weight on vertices).
We have seen in Section 2.3.1 that a complete binary tree structure with V vertices
can be stored e�ciently using an array of size V +1 (ignoring index 0) from top level to
the lowest level, from the leftmost vertex to the rightmost vertex of each level. Later,
we will reuse the same idea for Segment Tree data structure (see Section 2.4.4).

3. The unweighted graph is very small (1  V  62).
For a small unweighted graph with 1  V  5000, we can use Adjacency Matrix data

56
pair objects in C++ and tuple objects in Python can be easily sorted. The default sorting criteria

is to sort on the first item and then the second item for tie-breaking. In Java, we can write our own
IntegerPair/IntegerTriple class that implements Comparable.
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structure. For a very small graph with 1  V  62, we may even compress each row of
zeroes and ones of the Adjacency Matrix into a bitmask (use 64-bit integer, e.g., long
long). This way, we only need a single 1D array AM of size V vertices and each AM[i]
stores a bitmask of neighbors of vertex i. Since this neighbor list is a bitmask, all bit
manipulation operations discussed in Section 2.2.3 are applicable, i.e., we can delete
all outgoing edges of a vertex i by setting AM[i] = 0, create all outgoing edges of a
vertex i by setting AM[i] = (1<<V)-1, complement the graph by flipping all bits in
each row of AM, etc. This technique is used later in Book 2.

4. The unweighted graph (V  200K) is dense (E = (V ⇥ (V -1)/2)� L; L  10K).
If a rather large graph is unweighted and is known to be dense, it may be worthwhile
to reverse our thinking process and store information of the L edges that are not in
the graph inside a hash table called NOTEXIST. That’s it, we assume that our graph
is a complete unweighted graph first and if an edge that we want to traverse is inside
NOTEXIST, we know that such edge actually does not exist in the original graph.

Implicit Graph

Some graphs do not have to be stored in a graph data structure or explicitly generated for
the graph to be traversed or operated upon. Such graphs are called implicit graphs. We will
encounter them in the subsequent chapters. Some example implicit graphs are:

Figure 2.8: Implicit Graph Examples

1. Navigating a 2D grid map (see Figure 2.8—A). The vertices are the cells in the 2D
character grid where ‘.’ represents land and ‘#’ represents an obstacle. The edges can
be determined easily: there is an edge between two neighboring cells in the grid if they
share an N/E/S/W border57 and if both are ‘.’ (see Figure 2.8—B).

2. The graph of chess knight movements on an 8⇥8 chessboard. The vertices are the cells
in the chessboard. Two squares in the chessboard have an edge between them if they
di↵er by two squares horizontally and one square vertically (or two squares vertically
and one square horizontally). The first three rows and four columns of a chessboard
are shown in Figure 2.8—C (many other vertices and edges are not shown). See the
details about knight moves in Section 4.4.2.

3. A graph with N vertices labeled with [1..N] and there is an edge between two vertices
labeled with i and j if and only if (i+ j) is a prime. See Figure 2.8—D for N = 5.

Note: We will see several more examples of implicit graphs throughout this book.

Whenever we encounter an implicit graph, we usually do not store it in an explicit graph
data structure (although we can), but we will instead run our graph algorithm ‘on-the-fly’,
i.e., we determine the next vertex/edge to be processed as the graph algorithm runs.

57Other variants have 8 directions: N/NE/E/SE/S/SW/W/NW.
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Exercise 2.4.1.1: If the Adjacency Matrix (AM) of a (simple) graph has the property that
it is equal to its transpose, what does this imply?

Exercise 2.4.1.2*: Given a (simple) graph represented by an AM, perform the following
tasks in the most e�cient manner. Once you have figured out how to do this for AM, perform
the same task with Adjacency List (AL) and then Edge List (EL).

1. Count the number of vertices V and directed edges E (assume that a bidirectional
edge is equivalent to two directed edges) of the graph.

2*. Count the in-degree and the out-degree of a certain vertex v.

3*. Transpose the graph (reverse the direction of each edge).

4*. Create the complement of the graph.

5*. Check if the graph is a complete graph Kn. Note: A complete graph is a simple
undirected graph in which every pair of distinct vertices is connected by a single edge.

6*. Check if the graph is a tree (a connected undirected graph with E = V � 1 edges).

7*. Check if the graph is a star graph Sk. Note: A star graph Sk is a complete bipartite
K1,k graph. It is a tree with only one internal vertex and k leaves.

8*. Delete a certain edge (u, v) from the graph.

9*. Update the weight of a certain edge (u, v) of the graph from w to w0.

Exercise 2.4.1.3*: Create the Adjacency Matrix, Adjacency List, and Edge List represen-
tations of the graphs shown in Figure 4.1 (Section 4.2.2) and in Figure 4.8 (Section 4.2.10).
Hint: Use the graph data structure visualization in VisuAlgo.

Exercise 2.4.1.4*: Given a (simple) graph in one representation (AM, AL, or EL), convert
it into another graph representation in the most e�cient way possible! There are 6 possible
conversions here: AM to AL, AM to EL, AL to AM, AL to EL, EL to AM, and EL to AL.

Exercise 2.4.1.5*: Research other possible methods of representing graphs other than the
ones discussed in this section, especially for storing special graphs!

Exercise 2.4.1.6*: In this section, we assume that the neighbors of a vertex are listed in
increasing vertex number for Adjacency List (as Adjacency Matrix somewhat enforces such
ordering and there is no notion of neighbors of a vertex in Edge List). What if the neighbors
are not listed in increasing vertex number in the input but we prefer them to be in sorted
order in our computation? What is your best implementation?

Exercise 2.4.1.7*: Follow up question, is it a good idea to always store vertex numbers in
increasing order inside the Adjacency List?

Exercise 2.4.1.8*: Think of a situation/problem where using two (or more) graph data
structures at the same time for the same graph can be useful!
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2.4.2 Union-Find Disjoint Sets

Motivation

The Union-Find Disjoint Set (often abbreviated as UFDS) is a data structure to model a
collection of disjoint sets with the ability to e�ciently—in ⇡ O(1)—determine which set
an item belongs to (or to test whether two items belong to the same set) and to unite two
disjoint sets into one larger set. Such data structure can be used to solve the problem of
finding connected components in an undirected graph (Section 4.2.4 and 4.3.2). Initialize
each vertex into a separate disjoint set, then enumerate the graph’s edges and union every
two vertices/disjoint sets connected by an edge. We can then test if two vertices belong to
the same component/set easily. The number of disjoint sets that can be easily tracked also
denotes the number of connected components of the undirected graph.

These seemingly simple operations are not e�ciently supported by the C++ STL set,
Java TreeSet, Python set, or OCaml Set as they are not designed for this specific purpose.
Having a vector of sets and looping through each one to find which set an item belongs
to is expensive! C++ STL set union (in algorithm) will not be e�cient enough although
it combines two sets in linear time as we still have to deal with shu✏ing many contents
of the vector of sets! To support these set operations e�ciently, we need a better data
structure—the UFDS.

The Basic Ideas

The main innovation of this data structure is in choosing a representative ‘parent’ item to
represent a set. If we can ensure that each set is represented by only one unique item, then
determining if two items belong to the same set becomes far simpler: the representative ‘par-
ent’ item can be used as the identifier for the set. To achieve this, the UFDS data structure
creates a conceptual58 tree structure where the disjoint sets form a forest of trees. Each tree
corresponds to a disjoint set. The root of the tree is determined to be the representative
item for a set. Thus, the representative set identifier for an item can be obtained simply
by following the chain of parents to the root of the tree, and since a tree can only have one
root, this representative item can be used as a unique identifier for the set.

To do this e�ciently, we store the index of the parent item and (the upper bound of) the
height of the tree of each set (vi p and vi rank in our implementation). Remember that
vi is our shortcut for a vector of integers. p[i] stores the immediate parent of item i. If
item i is the representative item of a certain disjoint set, then p[i] = i, i.e., a self-loop.
rank[i] yields (the upper bound of) the height of the tree rooted at item i. We use vi
rank to help us keep the trees rather short, as we will see below.

In this section, we will use 5 disjoint sets {0, 1, 2, 3, 4} to illustrate the usage of this
data structure. We initialize the data structure such that each item is a disjoint set by itself
with rank 0 and the parent of each item is initially set to itself, as illustrated in the simple
Figure 2.9. As the tree grows taller, we will show the current rank values of vertices with
rank > 0. Each edge (p[i], i) of the tree implies that the parent of vertex i is p[i]. In the
visualization, p[i] is placed higher in y-axis than i.

Figure 2.9: Initial State: 5 Disjoint Sets = 5 Isolated Trees/Single Vertices

58We actually implement the UFDS using vector, thus the tree structure is conceptual only.
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UFDS Operation: O(1) findSet(i)

The function findSet(i) simply calls findSet(p[i]) recursively to find the representative
item of a set, returning findSet(p[i]) if p[i] != i and i otherwise.

There is a technique that can vastly speed up the findSet(i) function: Path compres-
sion. Whenever we find the representative (root) item of a disjoint set by following the chain
of ‘parent’ edges from a given item, we can set the parent of all items traversed to point
directly to the root. Any subsequent calls to findSet(i) on the a↵ected items will then
result in only one edge being traversed. This changes the structure of the tree (to make
findSet(i) more e�cient) but yet preserves the actual constitution of the disjoint set.

In Figure 2.10 (which is the result of 4 calls of di↵erent unionSet(i, j) operations that
are shown later in Figure 2.11), we show this ‘path compression’. See that p[0] = 1 but
1 is not the root. This is an indirect reference to the (true) representative item of the set,
i.e., p[0] = 1 and p[1] = 3 where 3 is the actual root of this tree. Function findSet(i)
may require more than one step to traverse the chain of ‘parent’ edges to the root, especially
when this chain is long (see Figure 2.10—top). However, once it finds the representative
item, (e.g., ‘x’) for that set, it will compress the path by setting p[i] = x 8i along the
chain. In this example, findSet(0) sets p[0] = 3 directly. Therefore, subsequent calls of
findSet(i) will be just O(1) (see Figure 2.10—bottom). This strategy is aptly named the
‘path compression’. Note that after such path compression, rank[3] = 2 now no longer
reflects the true height of the tree. This is why rank only reflects the upper bound of the
actual height of the tree. We don’t bother updating these rank values as it is costly to do
so and they are only used as ‘guiding heuristic’ during unionSet(i, j) operations.

Path compression technique used in the findSet(i) function combined with the ‘union
by rank’ heuristic used in the unionSet(i, j) operation make the runtime of the M calls
of findSet(i) (and also findSet(i) embedded inside unionSet(i, j)) operations to run
in an extremely e�cient amortized O(M ⇥ ↵(n)) time. For the purpose of competitive
programming where n is reasonably small (n  1M), we can treat the inverse Ackermann
function ↵(n) as O(1) constant operation.

Figure 2.10: Top: findSet(0), Bottom: The Subsequent Path Compression

UFDS Operation: O(1) isSameSet(i, j)

In Figure 2.11—bottom, isSameSet(0, 4) demonstrates another operation for this data
structure. Function isSameSet(i, j) simply calls O(1) findSet(i) and O(1) findSet(j)
and checks if both refer to the same representative item. If they do, then i and j both
belong to the same set. Here, we see that findSet(0) = findSet(p[0]) = findSet(1) =
1 is not the same as findSet(4) = findSet(p[4]) = findSet(3) = 3. Thus we return
false, item 0 and item 4 belong to di↵erent disjoint sets.

On the same Figure 2.11, bottom, if we ask isSameSet(2, 4) instead, we will return
true as findSet(2) = findSet(p[2]) = findSet(3) = 3 is the same as findSet(4), i.e.,
item 2 and item 4 belong to the same disjoint set.
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UFDS Operation: O(1) unionSet(i, j)

To unite a disjoint set that contains item i with a di↵erent disjoint set that contains item j
(let x = findSet(i), y = findSet(j), and x != y), we set the parent of one representative
item of a disjoint set, i.e., x to be the representative item of the other disjoint set, i.e., y
(that is, we set p[x] = y). This e↵ectively merges the two previously disjoint trees into a
bigger tree in the UFDS data structure. As such, unionSet(i, j) will cause item i, j, and
all other members of the previously disjoint sets to have the same representative item y,
either directly or indirectly.

To make the resulting tree as short as possible, we now use the information contained in
vi rank to ensure that rank[x]  rank[y], otherwise we swap x and y first.

If rank[x] < rank[y], then y—the representative item of the disjoint set with higher
rank (likely a taller tree) will be the new parent of the disjoint set with lower rank (likely a
shorter tree), thereby maintaining the rank of the resulting combined tree.

If rank[x] == rank[y], we can arbitrarily choose one of them as the new parent and
increase the rank of the resultant root. In our implementation, we set p[x] = y and do
++rank[y] in this case.

This is the ‘union by rank’ heuristic as the rank values do not always reflect the current
heights of the trees, but only reflect the upper bound of how tall those trees before.

In Figure 2.11—top, unionSet(0, 1) sets p[0] to 1 and rank[1] to 1.
In Figure 2.11—middle, unionSet(2, 3) sets p[2] to 3 and rank[3] to 1.

Figure 2.11: unionSet(0, 1) ! (2, 3) ! (4, 3) and isSameSet(0, 4)

In Figure 2.11—bottom, when we call unionSet(4, 3), we get rank[findSet(4)] = rank[4]
= 0 which is smaller than rank[findSet(3)] = rank[3] = 1, so we set p[4] = 3 without
changing the height of the resulting tree (rank[3] = 1 does not change)—this is the ‘union
by rank’ heuristic at work. With this heuristic, the path taken from any vertex to the rep-
resentative item by following the chain of ‘parent’ edges is minimized. We can show that
using this ‘union by rank’ heuristic without the ‘path compression’ technique (or without
any call to findSet(i) thus no path is compressed) will yield a tree that is not taller than
O(log n). Notice that if we do the reverse, i.e., if we set p[3] = 4 instead, we will create a
taller tree with rank[4] = 2 which will slow down future findSet(i) operations.

Finally, to wrap up, we call unionSet(0, 3). p[0] = x = 1 (and rank[1] = 1) and
p[3] = y = 3 (and rank[3] = 1 too). As both trees have the same rank (or are deemed
to have the same ‘height’), we set p[1] = 3 and update rank[3] = 2. Thus we have the
resulting tree as shown in Figure 2.10—top.
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Other UFDS Operations and Our Implementation

We implement UFDS data structure using Object-Oriented Programming (OOP) for easy
integration with any code that requires this data structure, e.g., Kruskal’s MST algorithm
(see Section 4.3.2). The constructor admits the initial size of disjoint sets = N and simply
initializes the p and rank vectors with their appropriate values.

We can also add two more simple features in UFDS (these two can be removed from the
code below if not needed). The first one is numDisjointSets() that returns the number of
disjoint sets currently in the UFDS data structure. We simply add one more internal counter
variable numSets that is initially set to N and reduce it by one every time a successful
unionSet(i, j) is performed.

The second one is sizeOfSet(i) that returns the number of items (including item i) that
the set that contains item i has. We create additional vi setSize on top of vi p, rank
and initialize all sets to have size 1 initially. Again, whenever a successful unionSet(i, j) is
performed, we sum the two sizes of the sets and store the information59 in the representative
item of the combined set.

#include <bits/stdc++.h>
using namespace std;

typedef vector<int> vi;

class UnionFind { // OOP style
private:

vi p, rank, setSize; // vi p is the key part
int numSets;

public:
UnionFind(int N) {

p.assign(N, 0); for (int i = 0; i < N; ++i) p[i] = i;
rank.assign(N, 0); // optional speedup
setSize.assign(N, 1); // optional feature
numSets = N; // optional feature

}

int findSet(int i) { return (p[i] == i) ? i : (p[i] = findSet(p[i])); }
bool isSameSet(int i, int j) { return findSet(i) == findSet(j); }
int numDisjointSets() { return numSets; } // optional
int sizeOfSet(int i) { return setSize[findSet(i)]; } // optional

void unionSet(int i, int j) {
if (isSameSet(i, j)) return; // i and j are in same set
int x = findSet(i), y = findSet(j); // find both rep items
if (rank[x] > rank[y]) swap(x, y); // keep x ’shorter’ than y
p[x] = y; // set x under y
if (rank[x] == rank[y]) ++rank[y]; // optional speedup
setSize[y] += setSize[x]; // combine set sizes at y
--numSets; // a union reduces numSets

}
};

59This idea is general: the representative set can also store other set’s attribute other than its size.
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int main() {
UnionFind UF(5); // create 5 disjoint sets
printf("%d\n", UF.numDisjointSets()); // 5
UF.unionSet(0, 1);
printf("%d\n", UF.numDisjointSets()); // 4
UF.unionSet(2, 3);
printf("%d\n", UF.numDisjointSets()); // 3
UF.unionSet(4, 3);
printf("%d\n", UF.numDisjointSets()); // 2
printf("isSameSet(0, 3) = %d\n", UF.isSameSet(0, 3)); // 0 (false)
printf("isSameSet(4, 3) = %d\n", UF.isSameSet(4, 3)); // 1 (true)
for (int i = 0; i < 5; ++i) // 1 for {0, 1} and 3 for {2, 3, 4}

printf("findSet(%d) = %d, sizeOfSet(%d) = %d\n",
i, UF.findSet(i), i, UF.sizeOfSet(i));

UF.unionSet(0, 3);
printf("%d\n", UF.numDisjointSets()); // 1
for (int i = 0; i < 5; ++i) // 3 for {0, 1, 2, 3, 4}

printf("findSet(%d) = %d, sizeOfSet(%d) = %d\n",
i, UF.findSet(i), i, UF.sizeOfSet(i));

return 0;
}

To further enhance your understanding of this data structure, please visit VisuAlgo, Union-
Find Disjoint Sets visualization, that shows visualization of this UFDS data structure and
all its operations. You can specify your own sequence of findSet(i) and unionSet(i, j)
and then see the resulting UFDS trees. The URL for the UFDS visualization and source
code example are shown below.

Visualization: https://visualgo.net/en/ufds

Source code: ch2/ourown/unionfind ds.cpp|java|py|ml

Exercise 2.4.2.1: Given N disjoint sets: {0, 1, 2, . . . , N -1}, please create a sequence of
unionSet(i, j) operations to create a tree with the shortest possible height. Note that the
‘union by rank’ heuristic is used.

Exercise 2.4.2.2: Given N disjoint sets: {0, 1, 2, . . . , N -1}, please create a sequence of
unionSet(i, j) operations to create a tree with rank = log2(N). Is it possible to create a
tree with rank > log2(N)? Note that the ‘union by rank’ heuristic is used.

Exercise 2.4.2.3: Given N disjoint sets: {0, 1, 2, . . . , N -1}, please create a sequence
of unionSet(i, j) and findSet(i) operations to create a tree with the shortest possible
height. Note that this time the ‘union by rank’ heuristic is not used but ‘path compression’
technique can be used.

Exercise 2.4.2.4: The implementation shown in this section uses a self loop p[i] == i to
identify whether item i is the representative item of the set. Can we avoid using self loop
so that our UFDS graph is a simple graph?
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2.4.3 Fenwick (Binary Indexed) Tree

Motivation

Fenwick Tree—also known as Binary Indexed Tree (BIT)—was invented by Peter M.
Fenwick in 1994 [14]. In this book, we will use the term Fenwick Tree as opposed to BIT
in order to di↵erentiate with the standard bit manipulations. The Fenwick Tree is a useful
data structure for implementing dynamic cumulative frequency tables. Suppose we have test
scores60 of n = 11 students s = {2, 4, 5, 6, 5, 6, 8, 6, 7, 9, 7} where the test scores are integer
values ranging from [1..m=10]. Table 2.5 shows the frequency of each individual test score
2 [1..m=10] and the cumulative frequency of test scores ranging from [1..i] denoted by
cf[i]—that is, the sum of the frequencies of test scores 1, 2, ..., i.

Index/ Frequency Cumulative Short Comment
Score f Frequency cf

0 - - Index 0 is ignored (as the sentinel value).
1 0 0 cf[1] = f[1] = 0, base case.
2 1 1 cf[2] = cf[1]+f[2] = 0+1 = 1.
3 0 1 cf[3] = cf[2]+f[3] = 1+0 = 1.
4 1 2 cf[4] = cf[3]+f[4] = 1+1 = 2.
5 2 4 cf[5] = cf[4]+f[5] = 2+2 = 4.
6 3 7 cf[6] = cf[5]+f[6] = 4+3 = 7.
7 2 9 cf[7] = cf[6]+f[7] = 7+2 = 9.
8 1 10 cf[8] = cf[7]+f[8] = 9+1 = 10.
9 1 11 cf[9] = cf[8]+f[9] = 10+1 = 11.

10 = m 0 11 = n cf[10] = cf[9]+f[10] = 11+0 = 11.

Table 2.5: Example of a Cumulative Frequency Table

The cumulative frequency table can also be used as a solution to the Range Sum Query (RSQ)
problem61 as it stores RSQ(1, i) 8i 2 [1..m] where m is the largest integer index/score62.
In the example above, we have m = 10, RSQ(1, 1) = 0, RSQ(1, 2) = 1, . . . , RSQ(1, 6) =
7, . . . , RSQ(1, 8) = 10, . . . , and RSQ(1, 10) = 11 (notice that RSQ(1, m) = n). We can
then obtain the answer to the RSQ for an arbitrary range RSQ(i, j) when i > 1 by using a
simple inclusion-exclusion principle: RSQ(1, j) - RSQ(1, i-1). For example, RSQ(4, 6)
= RSQ(1, 6) - RSQ(1, 3) = 7-1 = 6.

If the frequencies are static, then the cumulative frequency table as in Table 2.5 can
be computed e�ciently with a simple O(m) loop. First, set cf[1] = f[1]. Then, 8i 2
[2..m], compute cf[i] = cf[i-1]+f[i]. This cumulative frequencies (prefix sum) will be
discussed further in Section 3.5.2. However, when the frequencies are frequently updated
(increased/decreased, changed to a specific value, or reset to 0) and the RSQs are frequently
asked afterwards, it is better to use a dynamic data structure.

The Basic Ideas

Instead of using a Segment Tree (see Section 2.4.4) to solve this RSQ problem, we can
implement the far simpler Fenwick Tree instead (compare the source code for both imple-
mentations, provided in this section and in Section 2.4.4). This is perhaps one of the reasons
why the Fenwick Tree is currently included in the IOI syllabus [16]. Fenwick Tree operations
are also extremely e�cient as they use fast bit manipulation techniques (see Section 2.2).

60The test scores do not have to be sorted.
61
RSQ(i, j) of an array A is the sum of A[i] + A[i+1] + ... + A[j].

62Note that n = the number of data points and m = the largest integer value among the n data points.
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In this section, we will use the function LSOne(S) (which is actually ((S) & -(S)))
extensively, naming it to match its usage in the original paper [14]. In Section 2.2, we have
seen that the operation ((S) & (-S)) produces the first Least Significant One-bit in S. For
example, LSOne(90) = LSOne((1 011 010)2) = (10)2 = 2.

The Fenwick Tree63 is typically implemented as an array (we use a vector for size
flexibility). The Fenwick Tree is a tree that is indexed by the bits of its integer 64 keys. These
integer keys fall within the fixed range [1..m]—skipping65 index 0. In a programming contest
environment, m can approach ⇡ 1M so that the Fenwick Tree covers the range [1..1M]—
large enough for many practical (contest) problems. In Table 2.5 above, the scores [1..10]
are the integer keys in the corresponding array with size m = 10 and n = 11 data points.

Let the name of the Fenwick Tree array be ft. Then, the item at index i of Fenwick
Tree ft is responsible for items in the range [(i-LSOne(i)+1)..i] of the frequency array
f, i.e., ft[i] stores the cumulative frequency of items {i-LSOne(i)+1, i-LSOne(i)+2,
i-LSOne(i)+3, .., i} of f. In Figure 2.12, the top side shows the query (or interrogation)
tree of Fenwick Tree where the value of ft[i] is shown inside the circle above index i and
the range [i-LSOne(i)+1..i] is shown by the highlighted ranges. We can see that ft[4] =
2 is responsible for range [(4-4+1)..4] = [1..4] of f, ft[6] = 5 is responsible for range
[(6-2+1)..6] = [5..6] of f, ft[7] = 2 is responsible for range [(7-1+1)..7] = [7..7]
of f, ft[8] = 10 is responsible for range [(8-8+1)..8] = [1..8] of f, etc66. In Figure
2.12, the bottom side shows the raw frequency array f for each index i.

Operation: O(logm) rsq(j)

Figure 2.12: Example of rsq(6) on Fenwick (Interrogation/Query) Tree

With such an arrangement, if we want to obtain the cumulative frequency between [1..j],
i.e., rsq(j), we simply add ft[j], ft[j’], ft[j’’], . . . until index j is 0. This sequence
of indices is obtained via subtracting the Least Significant One-bit via the bit manipulation
expression: j’ = j-LSOne(j). Iteration of this bit manipulation e↵ectively strips o↵ the
least significant one-bit of j at each step. As an integer j only has O(log j) bits, rsq(j)
runs in O(logm) time when j = m.

In Figure 2.12, rsq(6) = ft[6]+ft[4] = 5+2 = 7. See that indices 4 and 6 are respon-
sible for range [1..4] and [5..6], respectively. By combining them, we account for the

63That is, similar with the UFDS ‘Tree’ and Segment ‘Tree’, we actually implement these data structures
as arrays and the ‘trees’ are just in conceptual realm.

64Recall that every (non-negative) integer has a unique binary representation.
65We have chosen to follow the original implementation by [14] that ignores index 0 to facilitate an easier

understanding of the bit manipulation operations of Fenwick Tree. Note that index 0 has no bit turned
on. Thus, the operation i +/- LSOne(i) simply returns i when i = 0 and will cause infinite loop if a
programmer is not careful with this classic corner case for Fenwick Tree implementation. Index 0 is also
used as the terminating condition in the rsq function in our implementation, i.e., rsq(0) = 0.

66In this book, we will not give detail on why this arrangement works and will instead show that it allows
for e�cient O(logm) update and RSQ operations. Interested readers are advised to read [14].
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entire range of [1..6]. The indices 6, 4, and 0 are related in their binary form: j = 610 =
(110)2 can be transformed to j’ = 410 = (100)2 and then to j’’ = 010 = (000)2.

Operation: O(logm) rsq(i, j)

With rsq(j) available and rsq(0) = 0, obtaining the cumulative frequency between two in-
dices [i..j] where 1  i  j  m is simple, just compute rsq(i, j) = rsq(j)-rsq(i-1),
another inclusion-exclusion principle. For example, if we want to compute rsq(4, 6), we
can simply return rsq(6)-rsq(3) = (5+2)-(0+1) = 7-1 = 6. Again, this operation runs
in O(2 ⇥ log j) ⇡ O(logm) time when j = m. Figure 2.13 displays the value of rsq(3) =
ft[3]+ft[2] = 0+1 = 1. Combine Figure 2.12 and 2.13 for the computation of rsq(4, 6).

Figure 2.13: Example of rsq(3) on Fenwick (Interrogation/Query) Tree

Operation: O(logm) update(i, v)

When updating the value of the item at index i by adding its value by v (note that v can
be either positive or negative), i.e., by calling update(i, v), we have to update ft[i],
ft[i’], ft[i’’], . . . until this index exceeds m because all these indices are a↵ected. This
sequence of indices are obtained via this similar iterative bit manipulation expression: i’
= i+LSOne(i). Starting from any integer i, the operation update(i, v) will take at most
O(logm) steps until i > m even if i = 1 at the beginning.

Figure 2.14: Example of update(5, 2) on Fenwick (Updating) Tree

In Figure 2.14, the top side, we show the updating tree of Fenwick Tree with the edges
showing chain of vertices that have to be updated. For example, update(5, 2) will a↵ect
(add +2 to) ft at indices i = 510 = (101)2, i’ = (101)2 + (001)2 = (110)2 = 610, and
i’’ = (110)2 + (010)2 = (1000)2 = 810 via the expression given above.

106



CHAPTER 2. DATA STRUCTURES AND LIBRARIES c� Steven, Felix, Suhendry

Basic Implementation

The very basic implementation of Fenwick Tree is short and sweet. The basic code can easily
be memorized. This basic version assumes that the keys are integers within range [1..m].

If the integer keys involved use index 0, we can get around this by setting +1 o↵set for
all indices, i.e., index 1/i/m in Fenwick Tree actually refers to original index 0/i-1/m-1 in
the actual array, respectively.

If the keys are floating point numbers but with small fixed precision, e.g., the test scores
shown in Table 2.5 are s = {5.5, 7.5, 8.0, 10.0} (i.e., allowing either a 0 or a 5 after
the decimal point) or s = {5.53, 7.57, 8.10, 9.91} (i.e., allowing for two digits after
the decimal point), then we can simply convert those fixed precision floating point numbers
back into integers and work with the integer version instead. For the first task, we can
multiply every number by two. For the second case, we can multiply all numbers by one
hundred. Obviously this strategy will significantly increase the range of keys, but the keys
with non-zero frequencies will be sparse.

If the keys involve big range but only n (1  n  1M) keys have frequency, e.g., the test
scores shown in Table 2.5 are s = {1K, 1M, 1B, 1G}, then we can use data compression
technique (see Section 3.2.3). We need help from an additional mapper data structure, e.g.,
unordered map to map (compress) those gigantic numbers into n distinct indices [1..n], and
then use Fenwick Tree operations as per normal.

#define LSOne(S) ((S) & -(S)) // the key operation

typedef vector<int> vi;

class FenwickTree { // index 0 is not used
private:

vi ft;
public:

FenwickTree(int m) { ft.assign(m+1, 0); } // create empty FT
int rsq(int j) { // returns RSQ(1, j)

int sum = 0;
for (; j; j -= LSOne(j))

sum += ft[j];
return sum;

}
int rsq(int i, int j) { return rsq(j) - rsq(i-1); } // inc/exclusion
// updates value of the i-th element by v (v can be +ve/inc or -ve/dec)
void update(int i, int v) {

for (; i < (int)ft.size(); i += LSOne(i))
ft[i] += v;

}
};

Operation: O(n+m) build(frequency-array f)

There are many other things that we can do with Fenwick Tree.
We can build Fenwick Tree from an array of raw data that contains n items, do one

linear O(n) pass to create an array of frequencies with m keys/integer indices, and then call
update(i, f[i]) 8i 2 [1..m]. If we do this, we will incur O(n+m logm) operations.
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However, we can do (slightly) better. After having the array of frequencies that have
m keys/integer indices, we simply set ft[i] += f[i] and then check if its parent in the
updating tree of Fenwick Tree is still within range. If it is, we update its parent too. We do
this sequentially 8i 2 [1..m]. This build is slightly faster, i.e., in O(n +m) operations as
we only do the necessary updating work.

Operation: O(log2 m) select(rank k)

Fenwick Tree supports an additional operation that can make it usable for order statistics
queries (see more details in Section 2.3.4): find the smallest index/key i so that the cu-
mulative frequency in the range [1..i] � k. For example, we may need to determine the
minimum index/key/score i in Table 2.5 such that there are at least k = 7 students covered
in the range [1..i] (index/score 6 in this case). This operation is called the select(rank
k) operation. The reverse operation of getting the ranking of a value v, i.e., rank(value v)
is actually trivial as we can just call rsq(v).

As the cumulative frequencies are sorted, we can use binary search. In Section 3.3.1, we
will learn the ‘Binary Search the Answer’ (BSTA) technique. Basically, we test the middle
index i = m/2 from the initial range [1..m] and see if rsq(1, i) is less than k (we try larger
i in binary search fashion) or not (we try smaller i in binary search fashion). The resulting
time complexity is O(logm⇥ logm) = O(log2 m) as we need O(logm) for the binary search
and each query is another O(logm) Fenwick Tree operation.

Range Update Point Query (RUPQ) Fenwick Tree

The default Fenwick Tree that is widely known above is called the Point Update (Updating
the value of a single index only) and Range (Sum) Query (PURQ) Fenwick Tree.

For other applications, we may need to perform Range Update (Updating the values
within a given range [lo..hi] by the same +v value) and Point Query (RUPQ) instead.
For example, given several intervals with small ranges (the boxes in Figure 2.15), determine
the number of intervals encompassing a single index i (the underlined index in Figure 2.15).
In Figure 2.15, (b, c, d, e), we add 4 intervals with ranges: [14-18], [12-16], [4-7] (this
interval does not encompass index i = 14), and [7-14]. If we query the number of intervals
encompassing index i = 14 before and after insertion of an interval, we will have answer =
0, 1, 2, 2, 3 (see Figure 2.15—(a, b, c, d, e), respectively).

Figure 2.15: RUPQ Example; Point Queries i = 14 are Underlined

Obviously, looping through each index i in the range [lo..hi] and call update(i, v) may
cost up to O(n log n) per query as the range can be as big as [1..n]. This is not desirable.
Fortunately, we can can slightly modify the basic Fenwick Tree instead.
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Operations: O(logm) range update(ui, uj, v) and O(logm) point query(i)

We can use the PURQ Fenwick Tree this way: For range update(ui, uj, v), we only call
two O(logm) PURQ Fenwick Tree point updates: update(ui, v) and update(uj+1, -v).
For point query(i), we simply return rsq(i) of the standard PURQ Fenwick Tree also in
O(logm) time.

Used as such, update(ui, v) makes all indices in [ui, ui + 1, . . . , n] have +v value and
update(uj+1, -v) makes all indices in [uj+1, uj+2, . . . , n] have -v value again, canceling
the previous update. Therefore, rsq(1, i) for all i 2 [ui, ui + 1, . . . , uj � 1, uj] will be
correctly updated by +v.

Figure 2.16: RUPQ Example; X denotes -1; Point Queries i = 14 are Underlined

In Figure 2.16, we show how this RUPQ Fenwick Tree works. In Figure 2.16—(b, c, d, e),
we gradually add 4 intervals. For range [14-18], we add +1 at index 14 and -1 at index 18+1
= 19. We do similar process for the other 3 ranges [12-16], [4-7], and [7-14]. If we now query
the number of intervals encompassing index i = 14 by calling rsq(1, 14), we will have the
correct answer = 1+1+(-1)+1+1 = 3 (see Figure 2.16—(e)).

Range Update Range Query (RURQ) Fenwick Tree

But what if we need to do both Range Updates and Range Queries e�ciently? For example
in Figure 2.17, we have the same 4 ranges added. If we ask what is the rsq(11, 14) like in
Figure 2.17—(e), we need to quickly answer 1+2+2+3 = 8.

Figure 2.17: RURQ Example; Range Queries are Underlined

There is yet another clever usage of Fenwick Tree that allows it to do such RURQ operations
in O(logm). To do this, we maintain two Fenwick trees - one is the RUPQ variant discussed
earlier and the other is a default PURQ Fenwick Tree to help store the cancellation factor
values. The details are shown below.

109



2.4. DS WITH OUR OWN LIBRARIES c� Steven, Felix, Suhendry

Operations: O(logm) range update(ui, uj, v) and O(logm) rsq(i, j)

Recall: Standard rsq(i, j) can be easily calculated with inclusion-exclusion principle
rsq(i, j) = rsq(1, j) - rsq(1, i-1), So we will focus on rsq(1, j).

Also recall that in the RUPQ variant, a range update(ui, uj, v) can be broken down
into two prefix updates: update(ui, v) and update(uj+1, -v).

So how a range update(ui, uj, v) is going to a↵ect the value of a rsq(1, j). We first
use the rupq.range update(ui, uj, v) to increase the values in [ui, ui+1, .., uj] by
+v. To simplify the calculation of rsq(1, j), we first assume that every index before j has
change equal to the value of j and will fix the ‘mistakes’ by canceling, so we set rsq(1, j) =
rupq.point query(j)*j - cancellation factor. There are three cases that is explained
with a simple Figure 2.18 where we perform range update(3, 5, 1) operation:

Figure 2.18: RURQ Explanation; Range Queries are Underlined

1. if j < ui, then rsq(1, j) is not a↵ected.
Because the range update starts from ui and index j < ui is not a↵ected.
So, rsq(1, j) = rupq.point query(j)*j is correct and cancellation factor = 0.
In Figure 2.18, for j < 3, we do not need to cancel anything, i.e.,
rsq(1, 1) = rupq.point query(1)*1 = 0*1 = 0
rsq(1, 2) = rupq.point query(2)*2 = 0*2 = 0 (see Figure 2.18—(b))
as both are not a↵ected by the range update(3, 5, 1) operation.

2. if ui  j  uj, then rsq(1, j) is changed by value v ⇥ (j � ui+ 1)
or (v ⇥ j)� (v ⇥ (ui� 1)).
rsq(1, j) = rupq.point query(j)*j already computes (v ⇥ j).
But we have to subtract this by (v ⇥ (ui� 1)) as indices [1..ui-1] are not updated.
This is where the second PURQ Fenwick Tree helps.
We set cancellation factor = purq.update(ui, v*(ui-1)).
In Figure 2.18, for 3  j  5, we need to cancel 1⇥ (3� 1) = 2 units, i.e.,
rsq(1, 3) = rupq.point query(3)*3 - 2 = 1*3 - 2 = 1
rsq(1, 4) = rupq.point query(4)*4 - 2 = 1*4 - 2 = 2 (see Figure 2.18—(c))
rsq(1, 5) = rupq.point query(5)*5 - 2 = 1*5 - 2 = 3
as all three are a↵ected by the range update(3, 5, 1) operation.

3. if j > uj, then rsq(1, j) is changed by a constant v ⇥ (uj � ui+ 1)
or (v ⇥ uj)� (v ⇥ (ui� 1)).
Again, rsq(1, j) = rupq.point query(j)*j already computes (v ⇥ j).
But now we have to subtract the answer by (v ⇥ (ui � 1)) and add back (v ⇥ uj) as
indices [1..ui-1] and [uj+1..j] are not updated.
We already set cancellation factor = purq.update(ui, v*(ui-1)) earlier, but
doing so we overdo the cancelation factor for [uj+1..j].
So we set cancellation factor = purq.update(uj+1, -v*uj) to undo the previous
cancelation factor and gets the correct answer again for all three cases.
In Figure 2.18, for j > 5, we need to cancel 1⇥ (3� 1) +�1⇥ 5 = �3 units, i.e.,
rsq(1, 6) = rupq.point query(6)*7 - (-3) = 0*6 + 3 = 3 (see Figure 2.18—(d))
as it is a↵ected by the range update(3, 5, 1) operation.
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The Complete Implementation

The basic version of PURQ Fenwick Tree supports both RSQ (range query) and (point)
update operations in just O(m) space and O(logm) time per RSQ/Point Update given
a set of n integer keys that ranges from [1..m]. In the complete implementation, we
add the slightly more complex alternative constructors from frequency array, the O(log2 m)
select(k) operation, and the RUPQ and RURQ variants of Fenwick Tree.

Our full C++ implementation is shown below. It is a bit long compared to the basic
version but you can remove parts that are not needed in order to simplify the code.

#include <bits/stdc++.h>
using namespace std;

#define LSOne(S) ((S) & -(S)) // the key operation

typedef long long ll; // for extra flexibility
typedef vector<ll> vll;
typedef vector<int> vi;

class FenwickTree { // index 0 is not used
private:

vll ft; // internal FT is an array
public:

FenwickTree(int m) { ft.assign(m+1, 0); } // create an empty FT

void build(const vll &f) {
int m = (int)f.size()-1; // note f[0] is always 0
ft.assign(m+1, 0);
for (int i = 1; i <= m; ++i) { // O(m)

ft[i] += f[i]; // add this value
if (i+LSOne(i) <= m) // i has parent

ft[i+LSOne(i)] += ft[i]; // add to that parent
}

}

FenwickTree(const vll &f) { build(f); } // create FT based on f

FenwickTree(int m, const vi &s) { // create FT based on s
vll f(m+1, 0);
for (int i = 0; i < (int)s.size(); ++i) // do the conversion first

++f[s[i]]; // in O(n)
build(f); // in O(m)

}

ll rsq(int j) { // returns RSQ(1, j)
ll sum = 0;
for (; j; j -= LSOne(j))

sum += ft[j];
return sum;

}
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ll rsq(int i, int j) { return rsq(j) - rsq(i-1); } // inc/exclusion

// updates value of the i-th element by v (v can be +ve/inc or -ve/dec)
void update(int i, ll v) {

for (; i < (int)ft.size(); i += LSOne(i))
ft[i] += v;

}

int select(ll k) { // O(log^2 m)
int lo = 1, hi = ft.size()-1;
for (int i = 0; i < 30; ++i) { // 2^30 > 10^9; usually ok

int mid = (lo+hi) / 2; // BSTA
(rsq(1, mid) < k) ? lo = mid : hi = mid; // See Section 3.3.1

}
return hi;

}
};

class RUPQ { // RUPQ variant
private:

FenwickTree ft; // internally use PURQ FT
public:

RUPQ(int m) : ft(FenwickTree(m)) {}
void range_update(int ui, int uj, int v) {

ft.update(ui, v); // [ui, ui+1, .., m] +v
ft.update(uj+1, -v); // [uj+1, uj+2, .., m] -v

} // [ui, ui+1, .., uj] +v
ll point_query(int i) { return ft.rsq(i); } // rsq(i) is sufficient

};

class RURQ { // RURQ variant
private: // needs two helper FTs

RUPQ rupq; // one RUPQ and
FenwickTree purq; // one PURQ

public:
RURQ(int m) : rupq(RUPQ(m)), purq(FenwickTree(m)) {} // initialization
void range_update(int ui, int uj, int v) {

rupq.range_update(ui, uj, v); // [ui, ui+1, .., uj] +v
purq.update(ui, v*(ui-1)); // -(ui-1)*v before ui
purq.update(uj+1, -v*uj); // +(uj-ui+1)*v after uj

}
ll rsq(int j) {

return rupq.point_query(j)*j - // initial calculation
purq.rsq(j); // cancelation factor

}
ll rsq(int i, int j) { return rsq(j) - rsq(i-1); } // standard

};
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int main() {
vll f = {0,0,1,0,1,2,3,2,1,1,0}; // index 0 is always 0
FenwickTree ft(f);
printf("%lld\n", ft.rsq(1, 6)); // 7 => ft[6]+ft[4] = 5+2 = 7
printf("%d\n", ft.select(7)); // index 6, rsq(1, 6) == 7, which is >= 7
ft.update(5, 1); // update demo
printf("%lld\n", ft.rsq(1, 10)); // now 12
printf("=====\n");
RUPQ rupq(10);
RURQ rurq(10);
rupq.range_update(2, 9, 7); // indices in [2, 3, .., 9] updated by +7
rurq.range_update(2, 9, 7); // same as rupq above
rupq.range_update(6, 7, 3); // indices 6&7 are further updated by +3 (10)
rurq.range_update(6, 7, 3); // same as rupq above
// idx = 0 (unused) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10
// val = - | 0 | 7 | 7 | 7 | 7 |10 |10 | 7 | 7 | 0
for (int i = 1; i <= 10; i++)

printf("%d -> %lld\n", i, rupq.point_query(i));
printf("RSQ(1, 10) = %lld\n", rurq.rsq(1, 10)); // 62
printf("RSQ(6, 7) = %lld\n", rurq.rsq(6, 7)); // 20
return 0;

}

To further enhance your understanding of this data structure, please visit VisuAlgo, Fenwick
Tree visualization, that shows visualization of this Fenwick Tree data structure and all its op-
erations. You can specify your own frequency array f, perform various RSQs, point updates,
Range Update Point Query (RUPQ), and Range Update Range Query (RURQ) variants,
and then see the resulting Fenwick Tree. The URL for the Fenwick Tree visualization and
source code example are shown below.

Visualization: https://visualgo.net/en/fenwicktree

Source code: ch2/ourown/fenwicktree ds.cpp|java|py|ml

Exercise 2.4.3.1: The select(k) operation of Fenwick Tree can actually be implemented
in O(logm) instead of O(log2 m) described in this section. How?

Exercise 2.4.3.2*: Extend the 1D Fenwick Tree to 2D!

Exercise 2.4.3.3*: In the next Section 2.4.4, we will study another data structure to answer
dynamic Range Min/Max Query. Show how to use Fenwick Tree to answer dynamic prefix
Range Min/Max Query.

Exercise 2.4.3.4*: In this section, we have not discussed if Fenwick Tree can be used for
Deletion/Insertion cases. Show how to implement delete(i)—deleting an existing value i
from an existing Fenwick Tree! Also show how to implement insert(i)—inserting a value
i that currently does not exist in the Fenwick Tree, i.e., rsq(i, i) = 0. What assumptions
that you need to make for insertion to work?
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2.4.4 Segment Tree

Motivation

In the previous Section 2.4.3 and in this section, we discuss two data structures which can
e�ciently answer dynamic range queries where the data is frequently updated and queried.
One such range query is the problem of finding the minimum value in an array within range
[i..j]. This is known as the Range Minimum67 Query (RMQ) problem68.

For example, given an array A of size n = 7 below, RMQ(1, 3) = 13, as 13 is the minimum
value among A[1], A[2], and A[3]. To check your understanding of RMQ, verify that in
the array A below, RMQ(3, 4) = 15, RMQ(0, 0) = 18, RMQ(0, 1) = 17, RMQ(4, 6) = 11,
and RMQ(0, 6) = 11.

Array Values 18 17 13 19 15 11 20
A Indices 0 1 2 3 4 5 6

In order to simplify our discussion, we make A to have size a power of 2. Since n = 7, we
append a dummy value A[7] = 1 (shown here as 99) that will not change the RMQ(i, j)
values for any pair of (i, j). Now n = 8, which is a power of 2.

Array Values 18 17 13 19 15 11 20 1 = 99
A Indices 0 1 2 3 4 5 6 7

There are several ways to solve the RMQ problem.
One näıve algorithm is to simply iterate the array from index i to j and report the index

with the minimum value per query. But this algorithm will run in O(n) time per query.
When n is large and there are many queries, such an algorithm may be infeasible.

If the data is static, i.e., the data is unchanged after it is instantiated, we can use the
Sparse Table data structure with O(n log n) Dynamic Programming pre-processing and O(1)
per RMQ that we discuss in Book 2. But if the data is dynamic, the heavy O(n log n) pre-
processing techniques used in Sparse Table data structure is too costly.

The Basic Ideas

In this section, we solve the dynamic RMQ problem on array A with a Segment Tree st,
which is another way to arrange data in a binary tree. There are several ways to implement
the Segment Tree. Our implementation uses the same concept as the 1-based compact array
in the Binary Heap where we use vi (our shortcut for vector<int>) st to represent the
binary tree. Index 1 (skipping index 0) is the root and the left and right children of index p
are index 2⇥ p and (2⇥ p)+ 1 respectively (also see Binary Heap discussion in Section 2.3).
The value of st[p] is the RMQ value of the segment associated with index p.

The root of Segment Tree represents the full segment [0, n-1] of array A. For each
segment [L, R] stored in index p where L != R, we split the segment into sub-segment
[L, (L+R)/2] (stored in index 2 ⇥ p) and sub-segment [(L+R)/2+1, R] (stored in index
(2 ⇥ p) + 1). We keep splitting the segments until each segment contains just one index of
the underlying array A, i.e., L = R.

67The opposite Range Maximum Query problem is identical to this Range Minimum Query problem.
68Segment Tree can also be used to answer dynamic Range Sum Query (RSQ(i, j)). However, Fenwick

Tree discussed earlier in Section 2.4.3 is an even simpler data structure for RSQ. Therefore in this Section
2.4.4, we concentrate on the RMQ.
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Segment Tree Operation: O(n) build from an Array A

Given an array A, we can build Segment Tree on top of this array by repeating the following
recursive process.

When L = R, it is clear that st[p] = A[L] (or A[R]).
Otherwise, we will recursively build the Segment Tree. We compare the minimum values

of the left and the right sub-segments (computed recursively) and update st[p] to be the
smaller value.

This process is implemented in the void build(int p, int L, int R) routine. This
build routine creates up to O(1 + 2 + 4 + 8 + . . . + 2log2 n) = O(2 ⇥ n) (smaller) segments
and therefore runs in O(n). If n is a power of 2, the resulting Segment Tree is a perfect
binary tree with log n levels and 2⇥ n� 1 vertices that can be stored in vi st of size 2⇥ n
(sacrificing index 0). However, as n may not be a power of 2 in general, we need to make n to
be the next power of 2 using formula 2d(log2(n)e and set st to have size 2⇥ 2d(log2(n)e to avoid
index out of bound error. In our implementation, we simply use a loose space complexity of
O(4n) = O(n) that always upperbound this precise formula 2⇥ 2d(log2(n)e.

For the sample array A, the corresponding Segment Tree is shown in Figure 2.19 and 2.20
where the segment information (vertex p: [left index i of A, right index j of A], abbreviated
as p:[L,R]) is shown below a Segment Tree vertex/circle p and its value, st[p], is shown
inside the vertex/circle.

Segment Tree Operation: O(log n) RMQ(i, j)

With the Segment Tree ready, answering an RMQ can be done in O(log n). The answer for
RMQ(i, i) is trivial—simply return A[i] itself. However, for the general case RMQ(i, j),
further checks are needed. We define a private function int RMQ(int p, int L, int R,
int i, int j) and the wrapper RMQ(i, j) function starts with RMQ(1, 0, n-1, i, j),
i.e., trying to find RMQ(i, j) from the root segment [L=0, R=n-1] (index p = 1).

Figure 2.19: Segment Tree of A = {18, 17, 13, 19, 15, 11, 20, 1} and RMQ(1, 3) = 13

Take for example the query RMQ(1, 3). The process in Figure 2.19 is as follows: start
from the root (index 1) which represents segment 1:[0,7]. We cannot use the stored
minimum value of segment 1:[0,7] = st[1] = 11 as the answer for RMQ(1, 3) since it
is the minimum value over a larger69 segment than the desired range in RMQ(1, 3). From

69Segment p:[L,R] is said to be larger than query range [i,j] (and therefore requires a split) if [L,R]
is not outside the query range and not inside query range (see the other footnotes).

115



2.4. DS WITH OUR OWN LIBRARIES c� Steven, Felix, Suhendry

the root, we only have to go to the left subtree as the root of the right subtree represents
segment 3:[4,7] which is outside70 the desired range in RMQ(1, 3).

We are now at the root of the left subtree (index 2) that represents segment 2:[0,3].
This segment 2:[0,3] is still larger than the desired range in RMQ(1, 3). In fact, RMQ(1, 3)
intersects both the left sub-segment 4:[0,1] and the right sub-segment 5:[2,3] of segment
2:[0,3], so we have to explore both subtrees (sub-segments).

The left segment 4:[0,1] of 2:[0,3] is not yet inside the desired range in RMQ(1, 3),
so another split is necessary. From segment 4:[0,1], we move right to segment 9:[1,1],
which is now inside71 the desired range in RMQ(1, 3). Now, we know that RMQ(1, 1) =
st[9] = A[1] = 17 and we can return this value to the caller. The right segment 5:[2,3]
of 2:[0,3] is also inside the desired range in RMQ(1, 3). From the stored value inside this
vertex, we know that RMQ(2, 3) = st[5] = 13. We do not need to traverse further down.
So now, we are back in the call to segment 2:[0,3], we now have a = RMQ(1, 1) = 17 and
b = RMQ(2, 3) = 13. Therefore, we now have RMQ(1, 3) = min(a, b) = min(17, 13)
= 13. This is the final answer that is returned back to the root.

Now let’s see another example: RMQ(4, 7). The execution in Figure 2.20 is as follows:
We start from the root segment 1:[0,7]. Because it is larger than the desired range in
RMQ(4, 7), we move right to segment 3:[4,7] as segment 2:[0,3] is outside. Since this
segment 3:[4,7] exactly represents RMQ(4, 7), we simply return the minimum value that
is stored in this vertex, which is 11. Thus RMQ(4, 7) = st[3] = 11.

Figure 2.20: Segment Tree of A = {18, 17, 13, 19, 15, 11, 20, 1} and RMQ(4, 7) = 11

The way data is structured allows us to avoid traversing the unnecessary parts of the tree!
Each query will only involve at most four vertices per level and there are at most logn levels.
Thus, the total cost is O(4 log n) = O(log n). Example: in RMQ(1, 6), we have one half of
the path as depicted in Figure 2.19 combined with this ‘mirror’ path: 1:[0,7] ! 3:[4,7]
! 6:[4,5] (backtracks once) ! 7:[6,7] ! 14:[6,6] (backtracks three times back to the
root). Because a = 13 (RMQ(1, 3)) and b = 11 (RMQ(4, 6)), then RMQ(1, 6) = min(a,
b) = min(13, 11) = 11. Notice that there are four vertices (index {4, 5, 6, 7}) that are
accessed in the second last level of the Segment Tree.

Segment Tree Operation: O(log n) Point update(i, i, v)

We repeat that if the array A is static, then using a Segment Tree to solve the RMQ problem
is overkill as Sparse Table data structure is more suitable.

70Segment p:[L,R] is said to be outside query range [i,j] if i > j.
71Segment p:[L,R] is said to be inside query range [i,j] if (L >= i) && (R <= j).
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Segment Tree is useful if the underlying array A is frequently updated (dynamic). There
are two possible kinds of update: A single point (single index i) update, or a range (multiple
indices between [i..j]) update. We first start with point update.

Figure 2.21: Updating A to {18, 17, 13, 19, 15, 77, 20, 1}

For example, if A[5] is now changed from 11 to 77, then we just need to update the vertices
along the leaf-to-root path in O(log n). See path: 13:[5,5] (st[13] = 77 now) ! 6:[4,5]
(st[6] = 15 as min(15, 77) = 15 now) ! 3:[4,7] (st[3] = 15 as min(15, 20) = 15
now) ! 1:[0,7] (st[1] = 13 as min(13, 15) = 13 now) in Figure 2.21.

In our implementation, since we already have range update(i, j, v), we can simulate
point update(i, j, v) by setting j = i.

For comparison, the Sparse Table data structure solution presented in Book 2 requires
another slow O(n log n) pre-processing to update the structure and is ine↵ective if there are
many such dynamic updates.

Segment Tree Operation: O(log n) Range update(i, j, v)

In some applications, we may need to update the values of a range [i..j] of array A in into
the same new value v. If we only know the O(log n) Point update(i, i, v) method above,
we may end up executing an O(n log n) algorithm as the range [i..j] can be as big as
[0..n-1]. Fortunately, there is a better solution by using Lazy72 Propagation technique.
The Lazy Propagation is similar to RMQ operation in a way that it also visits at most (log n)
vertices. But this time, instead of querying, it will just update the vertex that represents a
range that is inside the updated range and then backtrack.

This range update is clearer with an example: Assume that we now want to update
the values A[0..3] from Figure 2.21 from previously {18, 17, 13, 19} to all 30 (note that
A[5] is still 77), then we just need to update at most O(log n) vertices along the a↵ected
paths. For this example, we only need a single path in Figure 2.22: 1:[0,7] ! 2:[0,3]
(st[2] = 30, as A[0] = A[1] = A[2] = A[3] = 30 now), but this vertex has a lazy flag
as it has not yet propagate this information downwards), then we immediately backtrack to
! 1:[0,7] (st[1] = 30 now as min(30, 77) = 30). If we now call RMQ(0, 3), we will
traverse 1:[0,7] ! 2:[0,3] (st[2] = 30) and immediately report 30 although we have
not yet process these indices = {4, 5, 8, 9, 10, 11} in our Segment Tree.

72This Lazy Technique appears several times in this book and is a worthwhile technique to be studied.
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Figure 2.22: Updating A to {30, 30, 30, 30, 15, 77, 20, 1}

Now we will illustrate the full details of Lazy Propagation. Assume that we now want to
update the values A[3] from Figure 2.22 from previously 30 (not yet propagated before) to
7, then we just need to update at most O(log n) vertices along at a↵ected paths. For this
example, see the paths in Figure 2.23.

The path is: 1:[0,7] ! 2:[0,3] – propagate the lazy flag downwards to its two children
4:[0,1] (st[4] = 30 now) and 5:[2,3] – then continues to ! 5:[2,3] (st[5] = 30
temporarily) – propagate the lazy flag to its two children again 10:[2,2] (now we finally
update A[2] = st[10] = 30) and 11:[3,3] ! 11:[3,3] (now we finally update A[3] =
st[11] = 7) and then backtrack all the way to the root, updating the RMQ values of st[5],
st[2], and st[1] to the correct value 7.

Figure 2.23: Updating A to {30, 30, 30, 7, 15, 77, 20, 1}

As the behavior of this range update is similar as RMQ, we can conclude that it also runs
in O(log n) time—faster than multiple calls of individual point updates.

The Implementation

Our Segment Tree code that implements Range Minimum Query (RMQ) and Range Update
with Lazy Propagation technique is shown below. To change this implementation to deal
with Range Maximum Query problem, simply edit the conquer function.
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#include <bits/stdc++.h>
using namespace std;

typedef vector<int> vi;

class SegmentTree { // OOP style
private:

int n; // n = (int)A.size()
vi A, st, lazy; // the arrays

int l(int p) { return p<<1; } // go to left child
int r(int p) { return (p<<1)+1; } // go to right child

int conquer(int a, int b) {
if (a == -1) return b; // corner case
if (b == -1) return a;
return min(a, b); // RMQ

}

void build(int p, int L, int R) { // O(n)
if (L == R)

st[p] = A[L]; // base case
else {

int m = (L+R)/2;
build(l(p), L , m);
build(r(p), m+1, R);
st[p] = conquer(st[l(p)], st[r(p)]);

}
}

void propagate(int p, int L, int R) {
if (lazy[p] != -1) { // has a lazy flag

st[p] = lazy[p]; // [L..R] has same value
if (L != R) // not a leaf

lazy[l(p)] = lazy[r(p)] = lazy[p]; // propagate downwards
else // L == R, a single index

A[L] = lazy[p]; // time to update this
lazy[p] = -1; // erase lazy flag

}
}

int RMQ(int p, int L, int R, int i, int j) { // O(log n)
propagate(p, L, R); // lazy propagation
if (i > j) return -1; // infeasible
if ((L >= i) && (R <= j)) return st[p]; // found the segment
int m = (L+R)/2;
return conquer(RMQ(l(p), L , m, i , min(m, j)),

RMQ(r(p), m+1, R, max(i, m+1), j ));
}
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void update(int p, int L, int R, int i, int j, int val) { // O(log n)
propagate(p, L, R); // lazy propagation
if (i > j) return;
if ((L >= i) && (R <= j)) { // found the segment

lazy[p] = val; // update this
propagate(p, L, R); // lazy propagation

}
else {

int m = (L+R)/2;
update(l(p), L , m, i , min(m, j), val);
update(r(p), m+1, R, max(i, m+1), j , val);
int lsubtree = (lazy[l(p)] != -1) ? lazy[l(p)] : st[l(p)];
int rsubtree = (lazy[r(p)] != -1) ? lazy[r(p)] : st[r(p)];
st[p] = (lsubtree <= rsubtree) ? st[l(p)] : st[r(p)];

}
}

public:
SegmentTree(int sz) : n(sz), st(4*n), lazy(4*n, -1) {}

SegmentTree(const vi &initialA) : SegmentTree((int)initialA.size()) {
A = initialA;
build(1, 0, n-1);

}

void update(int i, int j, int val) { update(1, 0, n-1, i, j, val); }

int RMQ(int i, int j) { return RMQ(1, 0, n-1, i, j); }
};

int main() {
vi A = {18, 17, 13, 19, 15, 11, 20, 99}; // make n a power of 2
SegmentTree st(A);

printf(" idx 0, 1, 2, 3, 4, 5, 6, 7\n");
printf(" A is {18,17,13,19,15,11,20,oo}\n");
printf("RMQ(1, 3) = %d\n", st.RMQ(1, 3)); // 13
printf("RMQ(4, 7) = %d\n", st.RMQ(4, 7)); // 11
printf("RMQ(3, 4) = %d\n", st.RMQ(3, 4)); // 15

st.update(5, 5, 77); // update A[5] to 77
printf(" idx 0, 1, 2, 3, 4, 5, 6, 7\n");
printf("Now, modify A into {18,17,13,19,15,77,20,oo}\n");
printf("RMQ(1, 3) = %d\n", st.RMQ(1, 3)); // remains 13
printf("RMQ(4, 7) = %d\n", st.RMQ(4, 7)); // now 15
printf("RMQ(3, 4) = %d\n", st.RMQ(3, 4)); // remains 15
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st.update(0, 3, 30); // update A[0..3] to 30
printf(" idx 0, 1, 2, 3, 4, 5, 6, 7\n");
printf("Now, modify A into {30,30,30,30,15,77,20,oo}\n");
printf("RMQ(1, 3) = %d\n", st.RMQ(1, 3)); // now 30
printf("RMQ(4, 7) = %d\n", st.RMQ(4, 7)); // remains 15
printf("RMQ(3, 4) = %d\n", st.RMQ(3, 4)); // remains 15

st.update(3, 3, 7); // update A[3] to 7
printf(" idx 0, 1, 2, 3, 4, 5, 6, 7\n");
printf("Now, modify A into {30,30,30, 7,15,77,20,oo}\n");
printf("RMQ(1, 3) = %d\n", st.RMQ(1, 3)); // now 7
printf("RMQ(4, 7) = %d\n", st.RMQ(4, 7)); // remains 15
printf("RMQ(3, 4) = %d\n", st.RMQ(3, 4)); // now 7

return 0;
}

To further enhance your understanding of this rather advanced data structure, please visit
VisuAlgo, Segment Tree visualization, that shows visualization of this Segment Tree data
structure and all its operations. You can specify your own array A, perform various Range
Min/Max/Sum Queries, perform various Range Updates (recall that we can specify Point
Updates by setting L=R) with Lazy Propagation, and then see the resulting Segment Tree.
The URL for the Segment Tree visualization and source code example are shown below.

Visualization: https://visualgo.net/en/segmenttree

Source code: ch2/ourown/segmenttree ds.cpp|java|py|ml

Exercise 2.4.4.1: Using a similar Segment Tree as in the Exercise above, answer the queries
RSQ(1, 7) and RSQ(3, 8). Is this a good approach to solve the problem if array A is never
changed? (also see Section 3.5.2). Is it a good approach if array A is frequently changed?
(also see Section 2.4.3).

Exercise 2.4.4.2*: Draw the Segment Tree corresponding to array A = {10, 2, 47, 3,
7, 9, 1, 98, 21}. Answer RMQ(1, 7) and RMQ(3, 8)! Hint: Use the Segment Tree visu-
alization in VisuAlgo.

Exercise 2.4.4.3*: Modify the given Segment Tree implementation above so that it can be
used to solve the RSQ problem.

Exercise 2.4.4.4*: The (point/range) update operation shown in this section only changes
the value of a certain index/consecutive indices in array A. What if we want to delete existing
values of array A or insert a new value into array A? Can you explain what will happen with
the given Segment Tree code and what you should do to address it?

Exercise 2.4.4.5*: Solve this dynamic RSQ problem: UVa 12086 - Potentiometers (and
a few other dynamic RSQ problems) using both Fenwick Tree and Segment Tree. Which
solution is easier to implement in this case? Also see Table 2.6 for a comparison between
these two data structures.
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Feature Fenwick Tree Segment Tree
Build Tree from Array O(n+m) O(n)

Static RSQ Overkill Overkill
Dynamic RMin/MaxQ Limited Yes

Dynamic RSQ Yes Yes
Range Query Complexity O(logm) O(log n)
Point Update Complexity O(logm) O(log n)
Range Update Complexity O(logm), RURQ variant O(log n), Lazy Update
Length of Code (Basic) Much shorter Much longer
Length of Code (Full) Long Long

Table 2.6: Comparison Between Fenwick Tree and Segment Tree

Programming exercises that use the data structures discussed in this section:

a. Graph Data Structures Problems

1. Entry Level: UVa 11991 - Easy Problem from ... * (Adjacency List)

2. UVa 00599 - The Forrest for the Trees * (V �E = number of CCs; use
a bitset of size 26 to count the number of vertices that have some edge)

3. UVa 10895 - Matrix Transpose * (transpose adjacency list)

4. UVa 11550 - Demanding Dilemma * (graph DS; incidence matrix)

5. Kattis - abinitio * (combo: EL input, AM as working graph DS, AL output
(in hash format); all operations must be O(V ) or better)

6. Kattis - chopwood * (Prüfer sequence; use priority queue)

7. Kattis - traveltheskies * ((graph) DS manipulation; an array of ALs (one per
each day); simulate the number of people day by day)

Extra UVa: 10928.

Extra Kattis: alphabetanimals, flyingsafely, railroad, weakvertices.

Also see: Many more graph problems in Chapter 4 and 8.

b. Union-Find Disjoint Sets

1. Entry Level: Kattis - unionfind * (basic UFDS; similar to UVa 00793)

2. UVa 01197 - The Suspects * (LA 2817 - Kaohsiung03; CCs)

3. UVa 01329 - Corporative Network * (LA 3027 - SouthEasternEurope04;
interesting UFDS variant; modify the union and find routine)

4. UVa 10685 - Nature * (find the set with the largest item)

5. Kattis - control * (LA 7480 - Singapore15; simulation of UFDS; size of set;
number of disjoint sets)

6. Kattis - ladice * (size of set; decrement one per usage)

7. Kattis - almostunionfind * (new operation: move; idea: do not destroy the
parent array structure; also available at UVa 11987 - Almost Union-Find)

Extra UVa: 00793, 10158, 10507, 10583, 10608, 11690.

Extra Kattis: chatter, forests, more10, swaptosort, tildes, virtualfriends.

Also see: Kruskal’s algorithm that uses UFDS data structure in Section 4.3
and harder problems involving e�cient DS in Book 2.
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c. Tree-related Data Structures

1. Entry Level: Kattis - fenwick * (basic Fenwick Tree; use long long)

2. UVa 11402 - Ahoy, Pirates * (Segment Tree with lazy updates)

3. UVa 11423 - Cache Simulator * (clever usage of Fenwick Tree and large
array; important hint: look at the constraints carefully)

4. UVa 12299 - RMQ with Shifts * (Segment Tree with a few point (not
range) updates; RMQs)

5. Kattis - justforsidekicks * (use six Fenwick Trees, one for each gem type)

6. Kattis - moviecollection * (LA 5902 - NorthWesternEurope11; not a stack
but a dynamic RSQ problem; also available at UVa 01513 - Movie collection)

7. Kattis - supercomputer * (easy problem if we use Fenwick Tree)

Extra UVa: 00297, 01232, 11235, 11297, 11350, 12086, 12532.

Extra Kattis: turbo, worstweather.

Also see: Harder problems involving e�cient DS in Book 2.

Profile of Data Structure Inventor
Peter M. Fenwick is a Honorary Associate Professor in the University of Auckland. He
invented the Binary Indexed Tree in 1994 [14] as “cumulative frequency tables of arithmetic
compression”. The BIT is included in the IOI syllabus [16] and used in quite a number of
interesting contest problems for its e�cient yet easy to implement data structure.
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2.5 Solution to Non-Starred Exercises

Exercise 2.2.1.1*: Sub-question 1: The sorting requirements for integer age and string
first name are nice (ascending order), but we need to sort the N elements by decreasing
string last name if their ages are tied. It is not easy to reverse the sort order of a string, so
we need to come up with the following custom comparison function like this:

typedef tuple<int, string, string> iss; // combine the 3 fields

bool cmp(iss &A, iss &B) {
auto &[ageA, lastA, firstA] = A; // decompose the tuple
auto &[ageB, lastB, firstB] = B;
if (ageA != ageB) return ageA < ageB;
if (lastA != lastB) return lastA > lastB; // the annoying one
return firstA < firstB;

}

Exercise 2.2.1.2*: Sub-question 1: First, sort S in O(n log n) and then do an O(n) linear
scan starting from the second item to check if an integer and the previous integer are the
same. Alternatively, we can also use the faster Hash Table and O(n) linear scan to solve this
sub-question 1. Sub-question 6: Read the opening paragraph of Chapter 3 and the detailed
discussion in Book 2. Solutions for the other sub-questions are not shown.

Exercise 2.2.3.1: The answers (except sub-question 7 and 8):

1. S & (N � 1)

2. (S & (S � 1)) == 0

3. S & (S � 1)

4. S | (S + 1)

5. S & (S + 1)

6. S | (S � 1)

Exercise 2.2.4.1: Possible, keep the intermediate computations modulo 106. Keep chip-
ping away the trailing zeroes (either none or a few zeroes are added after a multiplication
from n! to (n+ 1)!).

Exercise 2.2.4.2: Possible. 9317 = 7⇥ 113. We also list 25! as its prime factors. Then, we
check if there are one factor 7 (yes) and three factors 11 (unfortunately no). So 25! is not
divisible by 9317. Alternative: use modular arithmetic (see the details in Book 2).

Exercise 2.3.1.1: The answers:

1. Insert(26): Insert 26 as the left subtree of 3, swap 26 with 3, then swap 26 with 19
and stop. The Max Heap array A now contains {-, 90, 26, 36, 17, 19, 25, 1, 2, 7, 3}.

2. ExtractMax(): Swap 90 (maximum item which will be reported after we fix the Max
Heap property) with 3 (the current bottom-most right-most leaf/the last item in the
Max Heap), swap 3 with 36, swap 3 with 25 and stop. The Max Heap array A now
contains {-, 36, 26, 25, 17, 19, 3, 1, 2, 7} and we report 90 as the answer.

3. Heap Sort will extract the values of array A in non-increasing order.
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Exercise 2.3.1.2: Yes, check that all indices (vertices) satisfy the Max Heap property.

Exercise 2.3.2.1: The answers:

1. Search(8): Immediately go to cell/slot 8%11 = 8 and find 8 at the head of the list
stored at cell 8,
Search(35): Immediately go to cell/slot 35%11 = 2 and iterate forward two times to
find 35 in the list stored at cell 2,
Search(77): Immediately go to cell/slot 77%11 = 0 and iterate forward once to find
77 is not in the list stored at cell 0, hence 77 is not in the Hash Table.

2. Insert(77): Insert 77 at the back of list stored at cell 77%11 = 0,
Insert(13): Because Search(13) finds 13, we cannot insert another duplicate into the
Hash Table—the default implementation is to maintain a set of integers (no duplicate),
Insert(19): Insert 19 at the back of list stored at cell 19%11 = 8.

3. Remove(9): Search(9) fails, so no change to the Hash Table,
Remove(7): Search(7) (found inside list stored at cell 7%11 = 7) and remove it,
Remove(13): Search(13) (found inside list stored at cell 13%11 = 2) and remove it.

Exercise 2.3.2.2: Since the collection is dynamic, we will encounter frequent insertion
and deletion queries. An insertion can potentially change the sort order. If we store the
information in a static array, we will have to use one O(n) iteration of an insertion sort after
each insertion and deletion (to close the gap in the array). This is ine�cient!

Exercise 2.3.2.3: Use the C++ STL unordered map (Java HashMap) and a counter variable.
This technique is quite frequently used in various (contest) problems. Example usage:

unordered_map<string, int> mapper;
int idx = 0; // idx starts from 0
for (int i = 0; i < M; ++i) {

char str[1000]; scanf("%s", &str);
if (!mapper.count(str)) // the first encounter
// if (mapper.find(str) == mapper.end()) // alternative way

mapper[str] = idx++; // set idx to str, then ++
}

Exercise 2.3.3.1:

1. search(71): root (15) ! 50 ! 71 (found)
search(7): root (15) ! 4 ! 7 (found)
search(22): root (15) ! 50 ! 23 ! empty left subtree (not found).

2. We will eventually have the same BST as in Figure 2.6.

3. To find the min/max item, we can start from root and keep going left/right until we
encounter a vertex with no left/right subtrees respectively. That vertex is the answer.

4. We will obtain the sorted output: 2, 4, 7, 10, 15, 23, 50, 65, 71. See Section 4.6.2 if
you are not familiar with the inorder tree traversal algorithm.

5. Pre-order: 15, 4, 2, 7, 10, 50, 23, 71, 65, Post-order: 2, 10, 7, 4, 23, 65, 71, 50, 15,
Level-order: 15, 4, 50, 2, 7, 23, 71, 10, 65.
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6. successor(50): Find the minimum item of the subtree rooted at the right of 50, which
is the subtree rooted at 71. The answer is 65.
successor(10): 10 has no right subtree, so 10 must be the maximum of a certain
subtree. That subtree is the subtree rooted at 4. The parent of 4 is 15 and 4 is the
left subtree of 15. By the BST property, 15 must be the successor of 10.
successor(71): 71 is the largest item and has no successor.
Note that the algorithm to find the predecessor of a vertex is similar.

7. remove(65): We simply remove 65, which is a leaf, from the BST
remove(71): As 71 is an internal vertex with one (left) child (65), we cannot just
delete 71 as doing so will disconnect the BST into two components. We set the parent
of 71 (which is 50) to have 65 as its right child.
remove(15): As 15 is a vertex with two children, we cannot simply delete 15 as doing
so will disconnect the BST into three components. We need to find the successor of
15 (which is 23) and use the successor to replace 15. We then delete the old 23 from
the BST (not a problem now). As a note, we can also use predecessor(key) instead of
successor(key) during remove(key) for the case when the key has two children.

Exercise 2.3.3.2: Use the C++ STL set (or Java TreeSet) as it is a balanced BST that
supports O(log n) dynamic insertions and deletions. We can use the inorder traversal to
print the data in the BST in sorted order (simply use C++ iterators (C++11 auto) or
Java Iterators). However, if the data does not need to be sorted, it may be better to use
the C++ STL unordered set (or Java HashSet) as it is a Hash Table that supports faster
O(1) dynamic insertions and deletions.

Exercise 2.3.3.3*: For Subtask 1, we can run inorder traversal in O(n) and see if the values
are sorted. Solutions to other subtasks are not shown.

Exercise 2.4.1.1: The graph is undirected.

Exercise 2.4.1.2*: Subtask 1: to count the number of vertices of a graph: AM/AL !
report the number of rows; EL ! count the number of distinct vertices in all edges. To
count the number of edges of a graph: AM ! sum the number of non-zero entries in every
row; AL ! sum the length of all the lists; EL ! simply report the number of rows. We can
also store and maintain the values of V and E as two more additional variables instead of
computing them every time. Solutions to other subtasks are not shown.

Exercise 2.4.2.1: We can call unionSet(i, 0) 8i 2 [1..N -1]. This way, we make vertex 0
to be the root with rank[0] = 1 and all other vertices are directly under vertex 0. This is
the shortest possible single tree (a star graph) in an UFDS of N > 1 elements.

Exercise 2.4.2.2: We need to group N vertices into N
2 trees of height (rank) 1, then we

group them into N
4 trees of height (rank) 2, and so on until we have just 1 tree of height

log2(N). The di�culty of creating a very tall tree in UFDS data structure when the ‘union
by rank’ heuristic is used show the importance of this heuristic.

Exercise 2.4.2.3: Without the ‘union by rank’ heuristic, the resulting tree can be as tall
as N -1. However, we can ‘flatten’ the tree to a ‘star graph’ like in Exercise 2.4.2.1 again
by calling find(i) 8i 2 [0..N -1] to compress the paths from all is directly to the root.

Exercise 2.4.2.4: We can use dummy value like -1 to do this, i.e., we test if p[i] == -1
to identify whether item i is the representative item of the set.

Exercise 2.4.3.1: See the solution inside ch2/ourown/fenwicktree ds.cpp.

Exercise 2.4.4.1: RSQ(1, 7) = 167 and RSQ(3, 8) = 139.
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2.6 Chapter Notes

The basic data structures mentioned in Section 2.2-2.3 can be found in almost every data
structure and algorithm textbook. References to the C++/Java/Python/OCaml built-in li-
braries are available online at: http://en.cppreference.com/w/, https://docs.oracle.
com/en/java/javase/11/docs/api/index.html, https://docs.python.org/3/library/,
and http://caml.inria.fr/pub/docs/manual-ocaml/. Note that although access to these
reference websites are usually provided in programming contests, we suggest that you try to
master the syntax of the most common library operations to minimize coding time!

One exception is the lightweight set of Boolean (a.k.a. bitmask). This unusual technique
is not commonly taught in data structure and algorithm classes, but it is important for com-
petitive programmers as it allows for significant speedups if applied to certain problems. This
data structure appears in various places throughout this book, e.g., in some iterative brute
force and optimized backtracking (Section 3.2.2 and Book 2), DP TSP (Section 3.5.2), DP
with bitmask (Book 2). They use bitmasks instead of vector<boolean> or bitset<size>
due to its e�ciency. Interested readers are encouraged to read the book “Hacker’s Delight”
[59] that discusses bit manipulation in further detail.

Extra references for the data structures mentioned in Section 2.4 are as follows. For
Graphs, see [51] and Chapters 22-26 of [5]. For Union-Find Disjoint Sets, see Chapter 21 of
[5]. For the Fenwick Tree, see [27]. For Segment Trees and other geometric data structures,
see [7]. We remark that all our implementations of data structures discussed in Section 2.4
avoid the usage of pointers. We use either arrays or vectors.

With more experience and by reading the source code we have provided, you can master
more techniques in the application of these data structures. Please explore the source code
provided at https://github.com/stevenhalim/cpbook-code.

There are few more data structures (related techniques) discussed in this book—string-
specific data structures (Trie/Su�x Trie/Tree/Array), Sliding Window, Sparse Ta-
ble, and Square Root/Heavy-Light Decompositions. Yet, there are still many other
data structures that we cannot cover in this book. If you want to do better in programming
contests, please research data structure techniques beyond what we have presented in this
book. For example, Red Black Trees, Splay Trees, or Treaps are useful for certain
problems that require you to implement and augment (add more data to) balanced BSTs
(see Book 2). Interval Trees (which are similar to Segment Trees) and Quad Trees (for
partitioning 2D space) are useful to know as their underlying concepts may help you to solve
certain contest problems.

Notice that many of the e�cient data structures discussed in this book exhibit the ‘Divide
and Conquer’ strategy (discussed in Section 3.3).

Statistics of CP Editions 1st 2nd 3rd 4th
Number of Pages 12 18 35 75 (+114%)
Written Exercises 5 12 41 17+38*=55 (+34%)
Programming Exercises 43 124 132 410 (+211%)

The breakdown of the number of programming exercises from each section is shown below:

Section Title Appearance % in Chapter % in Book
2.2 Linear DS 230 ⇡ 56% ⇡ 6.7%
2.3 Non-Linear DS 133 ⇡ 32% ⇡ 3.9%
2.4 Our-own Libraries 47 ⇡ 11% ⇡ 1.4%

Total 410 ⇡ 11.9%
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This page is intentionally left blank to keep the number of pages per chapter even.
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Chapter 3

Problem Solving Paradigms

If all you have is a hammer, everything looks like a nail
— Abraham Maslow, 1962

3.1 Overview and Motivation

In this chapter, we discuss four problem solving paradigms commonly used to attack prob-
lems in programming contests, namely Complete Search (a.k.a. Brute Force), Divide and
Conquer, the Greedy approach, and Dynamic Programming. All competitive programmers,
including IOI and ICPC contestants, need to master these problem solving paradigms (and
more) in order to be able to attack a given problem with the appropriate ‘tool’. Hammering
every problem with Brute Force solutions will not enable anyone to perform well in contests.
To illustrate, we discuss four simple tasks below involving an array A containing n  200K
positive integers  1M (e.g., A = {10, 7, 3, 5, 8, 2, 9}, n = 7) to give an overview of what
happens if we attempt every problem with Brute Force as our sole paradigm.

1. Find the largest and the smallest element of A. (10 and 2 for the given example).
2. Find the kth smallest element in A. (if k = 2, the answer is 3 for the given example).
3. Find the largest gap g such that x, y 2 A and g = |x� y|. (8 for the given example).
4. Find the longest increasing subsequence of A. ({3, 5, 8, 9} for the given example).

The answer for the first task is simple: try each element of A and check if it is the current
largest (or smallest) element seen so far. This is an O(n) Complete Search solution.

The second task is a little harder. We can use the solution above to find the smallest
value and replace it with a large value (e.g., 1M) to ‘delete’ it. We can then proceed to find
the smallest value again (the second smallest value in the original array) and replace it with
1M . Repeating this process k times, we will find the kth smallest value. This works, but if
k = n

2 (the median), this Complete Search solution runs in O(n2 ⇥ n) = O(n2). Instead, we
can sort the array A in O(n log n), returning the answer simply as A[k-1]. However, there
exists an expected O(n) solution (for a small number of queries) shown in Section 2.3.4. The
O(n log n) and O(n) solutions above are Divide and Conquer (D&C) solutions.

For the third task, we can similarly consider all possible two integers x and y in A, checking
if the gap between them is the largest for each pair. This Complete Search approach runs
in O(n2). It works, but is slow and ine�cient. We can prove that g can be obtained by
finding the di↵erence between the smallest and largest elements of A. These two integers can
be found with the solution of the first task in O(n). No other combination of two integers
in A can produce a larger gap. This is a Greedy solution.

For the fourth task, trying all O(2n) possible subsequences to find the longest increasing
one is not feasible as n  200K. In Section 3.5.2, we discuss an O(n2) Dynamic Program-
ming solution and also the faster O(n log k) Greedy+D&C solution for this task.
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3.2 Complete Search

The Complete Search technique, also known as brute force or (recursive) backtracking, is
a method for solving a problem by traversing the entire (or part of the) search space to
obtain the required solution. During the search, we are allowed to prune (that is, choose
not to explore) parts of the search space if we have determined that these parts have no
possibility of containing the required solution. This way, Complete Search must return the
best/optimal answer (if it exists) upon termination.

In programming contests, a contestant should develop a Complete Search solution when
there is clearly no other algorithm available (e.g., the task of enumerating all permutations
of {0, 1, 2, . . . , N -1} clearly requires ⌦(N !), i.e., at least N ! operations) or when better al-
gorithms exist, but are overkill as the input size happens to be small (e.g., the problem of
answering Range Minimum Queries as in Section 2.4.4 but on static arrays with N  100 is
solvable with an O(N) loop for each query).

In ICPC, Complete Search should be the first solution considered as it is usually easy to
come up with such a solution and to code/debug it. Remember the ‘KISS’ principle: Keep It
Short and Simple. A bug-free Complete Search solution should never receive a Wrong Answer
(WA) response in programming contests as it explores the entire search space that may
contain the answer. However, many programming problems do have better-than-Complete-
Search1 solutions as illustrated in Section 3.1. Thus a Complete Search solution may receive
a Time Limit Exceeded (TLE) verdict. With proper analysis, you can determine the likely
outcome (TLE versus AC) before attempting to code anything (Table 1.4 in Section 1.3.3
is a good starting point). If a Complete Search is easy to implement and likely to pass the
time limit, then go ahead and implement one. This will then give you more (contest) time
to work on harder problems in which Complete Search will be too slow.

In IOI, you will usually need better problem solving techniques as Complete Search
solutions are usually only rewarded with very small fraction of the total score in the subtask
scoring scheme. Nevertheless, Complete Search should be used when you cannot come up
with a better solution—it will at least enable you to score some marks.

Sometimes, running Complete Search on small instances of a challenging problem can
help us to understand its structure through patterns in the output (it is possible to visualize
the pattern for some problems) that can be exploited to design a faster algorithm. Some
combinatorics problems in Book 2 can be solved this way. Then, the Complete Search
solution can also act as a verifier for small instances, providing an additional check for the
faster but non-trivial algorithm that you develop.

After reading this section, you may have the impression that Complete Search only works
for ‘easy problems’ and it is usually not the intended solution for ‘harder problems’. This is
not entirely true. There exist hard problems that are only solvable with creative Complete
Search algorithms. Some of them are (the smaller instances of) NP-hard/complete problems.
We will discuss those problems later in Book 2.

In the next two subsections, we give several (easier) examples of this simple yet possibly
challenging paradigm. In Section 3.2.1, we give examples that are implemented iteratively.
In Section 3.2.2, we give examples of solutions that are implemented recursively (with back-
tracking). Finally, in Section 3.2.3, we provide a few tips to give your solution, especially
your Complete Search solution, a better chance to pass the required Time Limit.

1Rest assured that (a good) problem author will write a (heavily optimized) Complete Search solution
(in a fast programming language like C++) and then set a large enough test case to ensure that such a
Complete Search solution still gets the TLE verdict.
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3.2.1 Iterative Complete Search

Iterative Complete Search (Two Nested Loops): UVa 00725 - Division

Abridged problem statement: Find and display all pairs of 5-digit numbers that collectively
use the digits 0 through 9 once each, such that the first number divided by the second is
equal to an integer N, where 2  N  79. That is, abcde/fghij = N, where each letter
represents a di↵erent digit. The first digit of one of the numbers is allowed to be zero, e.g.,
for N = 62, we have 79546/01283 = 62; 94736/01528 = 62.

Quick analysis shows that fghij can only range from 01234 to 98765 which is at most
⇡ 100K possibilities. An even better bound for fghij is the range 01234 to 98765/N, which
has at most ⇡ 50K possibilities for N = 2 and becomes smaller with increasing N .

For each possible answer fghij2, we can get abcde from fghij⇥N and then check if
all 10 digits are di↵erent. This is a doubly-nested loop with a time complexity of at most
⇡ 50K ⇥ 10 = 500K operations per test case. This is small. Thus, an iterative Complete
Search is feasible. The main part of the code is shown below (we use a fancy bit manipulation
technique shown in Section 2.2 to determine digit uniqueness):

for (int fghij = 1234; fghij <= 98765/N; ++fghij) {
int abcde = fghij*N; // as discussed above
int tmp, used = (fghij < 10000); // flag if f = 0
tmp = abcde; while (tmp) { used |= 1<<(tmp%10); tmp /= 10; }
tmp = fghij; while (tmp) { used |= 1<<(tmp%10); tmp /= 10; }
if (used == (1<<10)-1) // all 10 digits are used

printf("%05d / %05d = %d\n", abcde, fghij, N);
}

Source code: ch3/cs/UVa00725.cpp|java|py|ml

Note that another algorithm that permutes 10 digits abcdefghij and tests if the first five
digits abcde divided by the last five digites fghij equals to N will still get Accepted for this
UVa 00725 as 10! ⇡ 3 million, just fractionally slower than the algorithm above.

Iterative Complete Search (Many Nested Loops): UVa 00441 - Lotto

In programming contests, problems that are solvable with a single loop are usually considered
easy. Problems which require doubly-nested iterations like UVa 00725 - Division above are
more challenging but they are not necessarily considered di�cult. Competitive programmers
must be comfortable writing code with more than two nested loops.

Let’s take a look at UVa 00441 - Lotto which can be summarized as follows: Given
6 < k < 13 integers (which are already sorted), enumerate all possible subsets of size 6 of
these integers in sorted order.

Since the size of the required subset is always 6 and the output has to be sorted lexico-
graphically, an easy solution is to use six nested loops. Even in the largest3 test case when
k = 12, these six nested loops will only produce 12C6 = 924 lines of output. This is small.

Source code: ch3/cs/UVa00441.cpp|java|py|ml

2Notice that it is better to iterate through fghij and not through abcde in order to avoid the division
operator so that we only work with precise integers. If we iterate through abcde instead, we may encounter
a non-integer result when we compute fghij = abcde/N.

3Notice that problem authors like to exaggerate problem limit a bit by saying k < 13 instead of k  12.
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for (int i = 0; i < k; ++i) scanf("%d", &S[i]); // input: k sorted ints
for (int a = 0 ; a < k-5; ++a) // six nested loops!

for (int b = a+1; b < k-4; ++b)
for (int c = b+1; c < k-3; ++c)

for (int d = c+1; d < k-2; ++d)
for (int e = d+1; e < k-1; ++e)

for (int f = e+1; f < k ; ++f)
printf("%d %d %d %d %d %d\n",S[a],S[b],S[c],S[d],S[e],S[f]);

Iterative Complete Search (Loops+Pruning): UVa 11565 - Simple Equations

Abridged problem statement: Given three integers A, B, and C (1  A,B,C  10 000),
find three other distinct integers x, y, and z such that x + y + z = A, x ⇥ y ⇥ z = B, and
x2+y2+z2 = C. The third equation x2+y2+z2 = C is a good starting point. Assuming that
C has the largest value of 10 000 and y and z are one and two (x, y, z have to be distinct),
then the possible range of values for x is [�100..100]. We can use the same reasoning to get
a similar range for y and z. We can then write the triply-nested iterative solution below:

bool sol = false; int x, y, z;
for (x = -100; x <= 100; ++x) // ~201^3 ~= 8M operations

for (y = -100; y <= 100; ++y)
for (z = -100; z <= 100; ++z)

if ((y != x) && (z != x) && (z != y) && // all 3 must be different
(x+y+z == A) && (x*y*z == B) && (x*x + y*y + z*z == C)) {

if (!sol) printf("%d %d %d\n", x, y, z);
sol = true;

}

Notice the way a short circuit AND was used to speed up the solution by enforcing a
lightweight check on whether x, y, and z are all di↵erent before we check the three formulas.
The code shown above already passes the required time limit for this problem, but we can do
better. We can also use the second equation x⇥y⇥z = B and assume that x is the smallest
out of the three. We derive that x  y and x  z and x⇥x⇥x  x⇥y⇥ z = B or x < 3

p
B.

The new range of x is [�22 . . . 22]. We then prune the search space by using if statements
to execute only some of the (inner) loops, or use break/continue statements to stop/skip
loops. The code shown below is now much faster than the code shown above (there are a
few other optimizations required to solve UVa 11571 - Simple Equations - Extreme!!):

bool sol = false; int x, y, z;
for (x = -22; (x <= 22) && !sol; ++x) if (x*x <= C)

for (y = -100; (y <= 100) && !sol; ++y) if ((y != x) && (x*x + y*y <= C))
for (z = -100; (z <= 100) && !sol; ++z)

if ((z != x) && (z != y) &&
(x+y+z == A) && (x*y*z == B) && (x*x + y*y + z*z == C)) {

printf("%d %d %d\n", x, y, z);
sol = true;

}

Source code: ch3/cs/UVa11565.cpp|java|py|ml
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Iterative Complete Search (Permutations): UVa 11742 - Social Constraints

Abridged problem statement: There are 0 < n  8 movie goers. They will sit in the front
row in n consecutive open seats. There are 0  m  20 seating constraints among them,
where each constraint specifies two movie goers a and b that must be at most (or at least)
c seats apart. The question: How many possible seating arrangements are there?

The key part to solve this problem is in realizing that we have to explore all permutations
(seating arrangements). Once we realize this fact, we can derive this simple O(n! ⇥ m)
‘filtering’ solution. We set counter = 0 and then try all possible n! permutations. We
increase the counter by 1 if the current permutation satisfies all m constraints. When all n!
permutations have been examined, we output the final value of counter. As the maximum
n is 8 and maximum m is 20, the largest test case will still only require 8! ⇥ 20 = 806 400
operations—a perfectly viable solution.

If you have never written an algorithm to generate all permutations of a set of num-
bers, you may still be unsure about how to proceed. The simple C++ solution that uses
next permutation4 in the algorithm library is shown below.

#include <bits/stdc++.h> // next_permutation is inside C++ STL <algorithm>
// the main routine
int i, n = 8, p[8] = {0, 1, 2, 3, 4, 5, 6, 7}; // the first permutation
do { // try all n! permutations

// test each permutation ‘p’ in O(m)
}
while (next_permutation(p, p+n)); // complexity = O(n! * m)

Source code: ch3/cs/UVa11742.cpp|java|py|ml

There is a good news for Python users: We can use itertools. Here is an example of listing
all permutations of 7 elements.

import itertools
p = list(itertools.permutations(range(7))) # iterate through p
print(len(p)) # should be 7! = 5040

Source code: ch3/cs/itertools1.py

Iterative Complete Search (Subsets): UVa 12455 - Bars

Abridged problem statement5: Given a list l containing 1  n  20 integers, is there a
subset of list l that sums to another given integer X?

We can try all 2n possible subsets of integers, sum the selected integers for each subset in
O(n), and see if the sum of the selected integers equals to X. The overall time complexity
is thus O(n⇥ 2n). For the largest test case when n = 20, this is just 20⇥ 220 ⇡ 21M . This
is ‘large’ but still viable (for the reason described below).

If you have never written an algorithm to generate all subsets of a set of numbers, you
may still be unsure how to proceed. An easy solution is to use the binary representation of

4We can start from the first (sorted) permutation, and then use iterated calls of C++ STL
next permutation to generate the next (second) permutation, and so on until we reach the n!-th (reverse
sorted) permutation. This way, we explore all n! possible permutations of n elements. Note that this is just
one of several possible ways to generate all n! permutations of n elements.

5This is also known as the NP-hard Subset-Sum problem, see Section 3.5.3 and Book 2.
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integers from 0 to 2n � 1 to describe all possible subsets. If you are not familiar with bit
manipulation techniques, see Section 2.2. The solution can be written in simple C/C++
code shown below (also works in Java). Since bit manipulation operations are (very) fast,
the required 21M operations for the largest test case is still doable in under a second.

// the main routine, variable ‘i’ (the bitmask) has been declared earlier
for (i = 0; i < (1<<n); ++i) { // for each subset, O(2^n)

int sum = 0;
for (int j = 0; j < n; ++j) // check membership, O(n)

if (i & (1<<j)) // see if bit ’j’ is on?
sum += l[j]; // if yes, process ’j’

if (sum == X) break; // the answer is found
}

Note: The implementation above can be speed up about a factor of two6 using LSOne(S)
method (more details in Book 2).

// the main routine, variable ‘i’ (the bitmask) has been declared earlier
for (i = 0; i < (1<<n); ++i) { // for each subset, O(2^n)

int sum = 0;
int mask = i; // this is now O(k)
while (mask) { // k is the # of on bits

int two_pow_j = LSOne(mask); // least significant bit
int j = __builtin_ctz(two_pow_j); // 2^j = two_pow_j, get j
sum += l[j];
mask -= two_pow_j;

}
if (sum == X) break; // the answer is found

}

Source code: ch3/cs/UVa12455.cpp|java|py|ml

There is a good news for Python users: We can (also) use itertools. Here is an example
of listing all 27 � 1 possible subsets of 7 elements minus the empty subset.

import itertools
N = 7
items = list(range(1, N+1))
c = [list(itertools.combinations(items, i)) for i in range(1, N+1)]
c = list(itertools.chain(*c)) # combine lists
print(len(c)) # should be 2^7-1 = 127

Source code: ch3/cs/itertools2.py

6There are 2n ⇥ n bits in 2n possible bitmasks of length n bits. Half of the bits are 1s, the others are
0s. The LSOne(S) implementation shown here only processes the 2n⇥n

2 1s, hence about 2x faster than the
standard implementation that iterates through all 2n ⇥ n 1s and 0s bits.
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Josephus Problem

The Josephus problem is a classic problem where initially there are n person numbered from
1, 2, . . . , n, standing in a circle. Starting from person no 1, every k-1 person are skipped and
the k-th person is going to be executed and then removed from the circle. This count-then-
execute process is repeated until there is only one person left and this person will be saved
(history said that he was the person named Josephus). For example, n = 6 and k = 3, then
the order of execution is: 3, 6, 4, 2, and 5, leaving person 1 as the sole survivor (draw a
small circular array of size n = 6 and simulate this process).

There are several variations of this Josephus problem, e.g., the one that doesn’t start
from person no 1, the one that wants the survivor to be a specific person x 2 [1..n], etc that
cannot be named one by one in this book.

The smaller instances of Josephus problem are solvable with (iterative) Complete Search
by simply simulating the process with help of a cyclic array (or a circular linked list).

However, some of the larger instances of Josephus problem require better solutions. We
show two of them below:

There is an elegant way to determine the position of the last surviving person for k = 2
using binary representation of the number n. If n = 1b1b2b3..bn then the answer is b1b2b3..bn1,
i.e., we move the most significant bit of n to the back to make it the least significant bit.
This way, the Josephus problem with k = 2 can be solved in O(1).

For other cases, let F (n, k) denotes the position of the survivor for a circle of size n and
with k skipping rule and we number the people from 0, 1, . . . , n-1 (we will later add +1 to
the final answer to match the format of the original problem description). After the k-th
person is killed, the circle shrinks by one to size n-1 and the position of the survivor is now
F (n-1, k) + k (mod n). This is captured with equation F (n, k) = (F (n-1, k) + k)%n. The
base case is when n = 1 where we have F (1, k) = 0. This recurrence has a time complexity
of O(n).

Exercise 3.2.1.1: Java does not have a built-in next permutation function yet. If you are
a Java user, write your own recursive backtracking routine to generate all permutations of
up to n objects in (any) order!

Exercise 3.2.1.2: How to use C++ next permutation function to generate list of nCk

combinations of k out of n objects? You cannot use recursive backtracking.

3.2.2 Recursive Complete Search

Simple Backtracking: UVa 00750 - 8-Queens Chess Problem

Abridged problem statement: In standard chess (with an 8⇥8 board), it is possible to place
8-Queens on the board such that no two Queens attack each other. Determine all such
possible arrangements given the position of one of the Queens (i.e., coordinate (a, b) must
contain a Queen). Output the possibilities in lexicographical (sorted) order.

Näıve 64C8 ⇡ 4B Idea

The most näıve solution is to enumerate all combinations of 8 di↵erent cells out of the
8 ⇥ 8 = 64 possible cells in a chess board and see if the 8-Queens can be placed at these
positions without conflicts. However, there are 64C8 ⇡ 4B such possibilities—this idea is not
even worth trying.
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Still Näıve 88 ⇡ 17M Idea

A better but still näıve solution is to realize that each Queen can only occupy one column,
so we can put exactly one Queen in each column. There are only 88 ⇡ 17M possibilities
now, down from 4B. This is just a ‘borderline’-passing solution for this problem. If we write
a Complete Search like this (without any ad hoc optimizations), we are likely to receive the
Time Limit Exceeded (TLE) verdict. We can still apply the few easy optimizations described
below to further reduce the search space.

Faster 8! ⇡ 40K Idea

Figure 3.1: 8-Queens

We know that no two Queens can share the same column or the
same row. Using this, we can further simplify the original prob-
lem to the problem of finding valid permutations among 8! row
positions. The value of row[i] describes the row position of the
Queen in column i, e.g., row = {1, 3, 5, 7, 2, 0, 6, 4} as
in Figure 3.1 is one of the solutions for this problem; row[0] =
1 implies that the Queen in column 0 is placed in row 1, and so
on (the index starts from 0 in this example). Modeled this way,
the search space goes down from 88 ⇡ 17M to 8! ⇡ 40K. This
solution is already fast enough, but we can still do (much) more.

Sub 8! ⇡ 40K Idea

We also know that no two Queens can share any of the two diagonal lines. Let Queen A be
at (i, j) and Queen B be at (k, l). They attack each other diagonally if abs(i-k) ==
abs(j-l). This formula means that the vertical and horizontal distances between these two
Queens are equal, i.e., Queen A and B lie on one of each other’s two diagonal lines.

A recursive backtracking solution places the Queens one by one in columns 0 to 7, ob-
serving all the constraints above. Finally, if a candidate solution is found, check if at least
one of the Queens satisfies the input constraints, i.e., row[b] == a. This sub (i.e., lower
than) O(n!) solution will obtain an AC verdict.

We provide our implementation below. If you have never written a recursive backtracking
solution before, please scrutinize it and perhaps re-code it in your own coding style.

Some reader may also appreciate the connection between recursive backtracking and
Depth First Search (DFS) graph traversal algorithm that is discussed in Section 4.2.2.

#include <bits/stdc++.h>
using namespace std;

int row[8], a, b, lineCounter; // global variables

bool canPlace(int r, int c) {
for (int prev = 0; prev < c; ++prev) // check previous Queens

if ((row[prev] == r) || (abs(row[prev]-r) == abs(prev-c)))
return false; // infeasible

return true;
}
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void backtrack(int c) {
if ((c == 8) && (row[b] == a)) { // a candidate solution

printf("%2d %d", ++lineCounter, row[0]+1);
for (int j = 1; j < 8; ++j) printf(" %d", row[j]+1);
printf("\n");
return; // optional statement

}
for (int r = 0; r < 8; ++r) { // try all possible row

if ((c == b) && (r != a)) continue; // early pruning
if (canPlace(r, c)) // can place a Queen here?

row[c] = r, backtrack(c+1); // put here and recurse
}

}

int main() {
int TC; scanf("%d", &TC);
while (TC--) {

scanf("%d %d", &a, &b); --a; --b; // to 0-based indexing
memset(row, 0, sizeof row); lineCounter = 0;
printf("SOLN COLUMN\n");
printf(" # 1 2 3 4 5 6 7 8\n\n");
backtrack(0); // sub 8! operations
if (TC) printf("\n");

}
return 0;

}

Source code: ch3/cs/UVa00750.cpp|java|py|ml

More Challenging Backtracking: UVa 11195 - Another N-Queens Problem

Abridged problem statement: Given an n ⇥ n chessboard (3  n  15) where some of the
cells are bad (Queens cannot be placed there), how many ways can you place N -Queens in
the chessboard so that no two Queens attack each other? Bad cells cannot be used to block
Queens’ attack.

The recursive backtracking code that we have presented above is not fast enough for
n = 15 and no bad cells, the worst possible test case for this problem. The sub O(n!)
solution presented earlier is still OK for n = 8 but not for n = 15. We have to do better.

The major issue with the previous N-Queens code is that it is quite slow when checking
whether the position of a new Queen is valid as we compare the new Queen’s position with
the previous c-1 Queens’ positions (see function bool canPlace(int r, int c)). It is
better to store the same information with three Boolean arrays (we use bitsets):

bitset<30> rw, ld, rd; // for the largest n = 14, we have 27 diagonals

Initially all n rows (rw), 2 ⇥ n � 1 left diagonals (ld), and 2 ⇥ n � 1 right diagonals (rd)
are unused (these three bitsets are set to false). When a Queen is placed at cell (r, c),
we flag rw[r] = true to disallow this row from being used again. Moreover, all (a, b)
where abs(r-a) = abs(c-b) also cannot be used anymore. There are two possibilities after
removing the abs function: r-c = a-b and r+c = a+b. Note that r+c and r-c represent
indices for the two diagonal axes. As r-c can be negative, we add an o↵set of n-1 to both
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sides of the equation so that r-c+n-1 = a-b+n-1. If a Queen is placed on cell (r, c), we
flag ld[r-c+n-1] = true and rd[r+c] = true to disallow these two diagonals from being
used again. Now, with these extra data structures and the extra problem-specific constraint
in UVa 11195 (board[r][c] cannot be a bad cell), we can extend our code to become:

void backtrack(int c) {
if (c == n) { ++ans; return; } // a solution
for (int r = 0; r < n; ++r) // try all possible row

if ((board[r][c] != ’*’) && !rw[r] && !ld[r-c+n-1] && !rd[r+c]) {
rw[r] = ld[r-c+n-1] = rd[r+c] = true; // flag off
backtrack(c+1);
rw[r] = ld[r-c+n-1] = rd[r+c] = false; // restore

}
}

We have added a tool for learning recursion in VisuAlgo. To explore the recursion tree
of (many simpler) recursive backtracking routines, you can use VisuAlgo, Recursion visu-
alization, that shows a visualization of the recursion tree of limited recursive backtracking
on small instances only. You can write a valid recursive function f(params) in JavaScript,
specify your own initial values of params, and execute it to view the recursion tree (VisuAlgo
will prevent its user from creating a gigantic recursion tree to avoid freezing the user’s web
browser). Figure 3.2 shows the recursion tree of TSP (see Section 3.5.2) with n = 5 cities
that tries all 4! = 24 permutations of 4 cities that starts from city 0. Note that there are 24
leaves with several overlapping subproblems that can be speed up with DP.

Figure 3.2: Recursion Tree of TSP with n = 5, also see Figure 4.42

Visualization: https://visualgo.net/en/recursion

Exercise 3.2.2.1*: Unfortunately, the updated solution presented using bitsets: rw, ld,
and rd will still obtain a TLE for UVa 11195 - Another N-Queens Problem. We need to
further speed up the solution using bitmask techniques and another way of using the left
and right diagonal constraints. This solution will be discussed in Book 2. For now, use the
idea presented here to speed up the code for UVa 00750+00167+11085!

Exercise 3.2.2.2*: What if we are asked to print out just one (any) valid N -queens solution
given N? What if 3  N  15? What if 3  N  1000? What if 3  N  100 000?
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3.2.3 Complete Search Tips

The biggest gamble in writing a Complete Search solution is whether it will or will not be
able to pass the time limit. If the time limit is 10 seconds (online judges do not usually
use large time limits for e�cient judging) and your program currently runs in ⇡ 10 seconds
on several (can be more than one) test cases with the largest input size as specified in the
problem description, yet your code is still judged to be TLE, you may want to tweak the
‘critical code’7 in your program instead of re-solving the problem with a faster algorithm
which may not be easy to design or may be non-existent.

Here are some tips that you may want to consider when designing your Complete Search
solution for a certain problem to give it a higher chance of passing the Time Limit. Writing
a good Complete Search solution is an art in itself.

Tip 1: Filtering versus Generating

Programs that examine lots of (if not all) candidate solutions and choose the ones that are
correct (or remove the incorrect ones) are called ‘filters’, e.g., the näıve 8-Queens solver with
time complexity of 64C8 or 88, the iterative solution for UVa 00725 and UVa 11742, etc.
Usually ‘filter’ programs are written iteratively.

Programs that gradually build the solutions and immediately prune invalid partial solu-
tions are called ‘generators’, e.g., the improved recursive 8-Queens solver with its sub O(n!)
complexity plus diagonal checks. Usually, ‘generator’ programs are easier to implement when
written recursively as it gives us greater flexibility for pruning the search space.

Generally, filters are easier to code but run slower, given that it is usually far more
di�cult to prune more of the search space iteratively. Do the math (complexity analysis) to
see if a filter is good enough or if you need to create a generator.

Tip 2: Prune Infeasible/Inferior Search Space Early

When generating solutions using recursive backtracking (see tip above), we may encounter
a partial solution that will never lead to a full solution. We can prune the search there
and explore other parts of the search space. Example: The diagonal check in the 8-Queens
solution above. Suppose we have placed a Queen at row[0] = 2. Placing the next Queen at
row[1] = 1 or 3 will cause a diagonal conflict and placing the next Queen at row[1] = 2
will cause a row conflict. Continuing from any of these infeasible partial solutions will never
lead to a valid solution. Thus we can prune these partial solutions here and concentrate on
the other valid positions: row[1] = {0, 4, 5, 6, 7}, thus reducing the overall runtime.
As a rule of thumb, the earlier you can prune the search space, the better.

In other problems, we may be able to compute the ‘potential worth’ of a partial (and
still valid) solution. If the potential worth is inferior to the worth of the current best found
valid solution so far, we can prune the search there.

Tip 3: Utilize Symmetries

Some problems have symmetries and we should try to exploit symmetries to reduce execu-
tion time! In the 8-Queens problem, there are 92 solutions but there are only 12 unique (or
fundamental/canonical) solutions as there are rotational and line symmetries in the prob-
lem. You can utilize this fact by only generating the 12 unique solutions and, if needed,
generate the whole 92 by rotating and reflecting these 12 unique solutions. Example: row =
{7-1, 7-3, 7-5, 7-7, 7-2, 7-0, 7-6, 7-4} = {6, 4, 2, 0, 5, 7, 1, 3} is the hor-
izontal reflection of the configuration in Figure 3.1.

7It is said that every program spends most of its time in only about 10% of its code—the critical code.
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However, we have to remark that it is true that sometimes considering symmetries can
actually complicate the code. In competitive programming, this is usually not the best way
(we want shorter code to minimize bugs). If the gain obtained by dealing with symmetry is
not significant in solving the problem, just ignore this tip.

Tip 4: Pre-Computation a.k.a. Pre-Calculation

Sometimes it is helpful to generate tables or other data structures that accelerate the lookup
of a result prior to the execution of the program itself. This is called Pre-Computation, in
which one trades memory/space for time. However, this technique can rarely be used for
recent programming contest problems.

For example, since we know that there are only 92 solutions in the standard 8-Queens
chess problem, we can create a 2D array int solution[92][8] and then fill it with all
92 valid permutations of the 8-Queens row positions! That is, we can create a generator
program (which takes some time to run) to fill this 2D array solution. Afterwards, we can
write another program to simply and quickly print the correct permutations within the 92
pre-calculated configurations that satisfy the problem constraints.

Although this tip cannot be used for most Complete Search problems, you can find a list
of a few programming exercises where this tip can be used at the end of this section.

Tip 5: Try Solving the Problem Backwards

Some contest problems look far easier when they are solved ‘backwards’ [47] (from a less
obvious angle) than when they are solved using a frontal attack (from the more obvious angle
as described in the problem description). Be prepared to attempt unconventional approaches
to problems.

This tip is best illustrated using an example: UVa 10360 - Rat Attack: Imagine a 2D
array (up to 1025 ⇥ 1025) containing rats. There are n  20 000 rats spread across the
cells. Determine which cell (x, y) should be gas-bombed so that the number of rats killed
in a square box (x-d, y-d) to (x+d, y+d) is maximized. The value d is the power of the
gas-bomb (d  50), see Figure 3.3.

An immediate solution is to attack this problem in the most obvious fashion possible:
bomb each of the 10252 cells and select the most e↵ective location. For each bombed cell
(x, y), we can perform an O(d2) scan to count the number of rats killed within the square-
bombing radius. For the worst case, when the array has size 10252 and d = 50, this takes
10252 ⇥ 502 = 2626M operations. TLE8!

Figure 3.3: UVa 10360 [44]

Another option is to attack this problem backwards. We
create an array int killed[1025][1025]. For each rat pop-
ulation at coordinate (x, y), add it to killed[i][j], where
|i � x|  d and |j � y|  d. This is because if a bomb was
placed at (i, j), the rats at coordinate (x, y) will be killed.
This pre-processing takes O(n ⇥ d2) operations. Then, to de-
termine the most optimal bombing position, we can simply
find the coordinate of the highest entry in array killed, which
can be done in 10252 operations. This approach only requires
20 000⇥ 502 + 10252 = 51M operations for the worst test case
(n = 20 000, d = 50), ⇡ 51 times faster than the frontal attack!
This is an AC solution.

8Although year 2020 CPU can compute ⇡ 100M operations in ⇡ 1 second, 2626M operations will still
take too long in a contest environment.
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Tip 6: Data Compression

The input constraint in some creative problems where the problem author’s expected solution
is Complete Search may be ‘disguised’ to look too big for a normal Complete Search solution
to work within time limit. But upon more careful inspection, some–usually subtle–remarks
in the problem description actually reduce the search space (significantly) which then makes
a Complete Search solution feasible, like the following exercise in Section 1.3.3:

Given a multiset S of M = 100K integers, we want to know how many di↵erent integers
that we can form if we pick two (not necessarily distinct) integers from S and sum them.
The content of multiset S is prime numbers not more than 20K.

If we directly try all possible O(M2) pairs of integers and insert their sums into a hash
table (O(1) per insertion), we will get Time Limit Exceeded as M = 100K integers.

However, observe that multiset S contains only prime numbers under 20K. Later in Book
2, we will find out that ⇡(20 000) = 2262, i.e., there are only 2262 distinct prime numbers
under 20K despite the size of multiset S can be up to M = 100K. So, we do one O(M) data
compression pass to ensure that each integer only has at most two copies, i.e., N  2⇥2262.
Afterwards, we perform O(N2) complete search check as before.

Tip 7: Optimizing Your Source Code

There are many techniques that you can use to optimize9 your code. Understanding computer
hardware and how it is organized, especially the I/O, memory, and cache behavior, can help
you design better code. Some examples (not exhaustive) are shown below:

1. A biased opinion10: Use C++ instead of Java (slower than C++) or Python (slower
than Java). An algorithm implemented using C++ usually runs faster than the one
implemented in Java or Python in many online judges, including UVa [44] and Kattis
[34]. Some, but not all, programming contests give Java/Python users extra time to
account for the di↵erence in performance (but this is never 100% fair).

2. Bit manipulation on the built-in integer data types (up to the 64-bit integer) is (much)
more e�cient than index manipulation in an array of booleans (see bitmask in Sec-
tion 2.2). If we need more than 64 bits, use the C++ STL bitset rather than
vector<bool> (e.g., for Sieve of Eratosthenes in Book 2).

3. For C/C++ users, use the faster C-style scanf/printf rather than cin/cout (or
at least set ios::sync with stdio(false); cin.tie(NULL); albeit still slower than
scanf/printf).

4. For Java users, use the faster BufferedReader/BufferedWriter classes as follows:

BufferedReader br = new BufferedReader( // speedup
new InputStreamReader(System.in));

// Note: String splitting and/or input parsing is needed afterwards
PrintWriter pw = new PrintWriter(new BufferedWriter( // speedup

new OutputStreamWriter(System.out)));
// PrintWriter allows us to use the pw.printf() function
// do not forget to call pw.close() before exiting your Java program

9Most techniques mentioned in this tip are not good for general Software Engineering.
10OCaml is not widely used in programming contest as of year 2020.
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5. For Python users, read all input first upfront before processing them in-memory and
bu↵er output first before writing them out in one go, especially if the I/O is big.

import sys
inputs = sys.stdin.read().splitlines() # read all first
outputs = [] # buffer output first
ln = 0 # assumption:
while True: # input has >1 lines

N = int(inputs[ln]) # with 1 integer each
if N == 0: break
outputs.append(str(N)) # sample output
ln += 1

sys.stdout.write(’\n’.join(outputs)) # write in one go

6. Use the expected O(n log n) but cache-friendly quicksort in C++ STL algorithm::sort
(part of ‘introsort’) rather than the true O(n log n) but non cache-friendly heapsort (its
root-to-leaf/leaf-to-root operations span a wide range of indices—lots of cache misses).

7. Access a 2D array in a row-major fashion (row by row) rather than in a column-major
fashion as multidimensional arrays are stored in a row-major order in memory. This
will increase the probability of cache hit.

8. Use lower level data structures/types at all times if you do not need the extra func-
tionality in the higher level (or larger) ones. For example, use an array with a slightly
larger size than the maximum size of input instead of using resizable vectors. Also,
use 32-bit ints instead of 64-bit long longs as the 32-bit int is faster in most 32-bit
online judge systems.

9. For Java, use the faster ArrayList (and StringBuilder) rather than Vector (and
StringBuffer). Java Vectors and StringBuffers are thread safe but this feature is
not needed in competitive programming.

10. Declare most data structures (especially the bulky ones, e.g., large arrays) once by
placing them in global scope. Allocate enough memory to deal with the largest input
of the problem. This way, we do not have to pass (or worse, copy) the data struc-
tures around as function arguments. For problems with multiple test cases, simply
clear/reset the contents of the data structure before dealing with each test case.

11. When you have the option to write your code either iteratively or recursively, choose the
iterative version. Example: the iterative C++ STL next permutation and iterative
subset generation techniques using bitmask shown in Section 3.2.1 are (far) faster than
if you write similar routines recursively and when early pruning is not possible.

12. Array access in (nested) loops can be slow. If you have an array A and you frequently
access the value of A[i] (without changing it) in (nested) loops, it may be beneficial
to use a local variable temp = A[i] and work with temp instead.

13. For C++ users: Using C-style character arrays will yield faster execution than when
using the C++ STL string. For Java/Python/OCaml users, please be careful with
String manipulation as Java/Python/OCaml strings are immutable. It is better to
use Java StringBuilder or Python list (and join the list afterwards).
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Browse the Internet or relevant books (e.g., [59]) to find (much) more information on how
to speed up your code. Practice this ‘code hacking skill’ by choosing a harder problem in
UVa or Kattis online judge where the runtime of the best solution is not 0.000s. Submit
several variants of your Accepted solution and check the runtime di↵erences. Adopt hacking
modifications that consistently give you faster runtime.

Finally, Use Better Data Structures & Algorithms :)

No kidding. Using better data structures and algorithms – if such solutions exist – will
always outperform any micro optimizations11 mentioned in Tips 1-7 above. If you initially
thought that the problem can be solved with Complete Search and you are also sure that
you have written your fastest Complete Search code, but it is still judged as TLE, maybe it
is time to abandon Complete Search and think of another – non-Complete Search – solution.
However, if this happens, it is a bad news for your contest performance.

3.2.4 Complete Search in Programming Contests

The starting source of the ‘Complete Search’ material in this chapter is the USACO training
gateway [43]. We have adopted the name ‘Complete Search’ rather than ‘Brute-Force’ (with
its negative connotations) as we believe that some Complete Search solutions can be clever
and fast. We feel that the term ‘clever Brute-Force’ is also a little self-contradictory.

If a problem is solvable by Complete Search, it will also be clear when to use the iterative
or recursive backtracking approaches. Iterative approaches are used when one can derive the
di↵erent states easily with some formula relative to a certain counter and (almost) all states
have to be checked, e.g., scanning all the indices of an array, enumerating (almost) all possible
subsets of a small set, generating (almost) all permutations, etc. Recursive Backtracking is
used when it is hard to derive the di↵erent states with a simple index and/or one also wants
to (heavily) prune the search space, e.g., the N -Queens chess problem. If the search space
of a problem that is solvable with Complete Search is large, then recursive backtracking
approaches that allow early pruning of infeasible sections of the search space are usually
used. Pruning in iterative Complete Searches is not impossible but usually di�cult.

The best way to improve your Complete Search skills is to solve more Complete Search
problems so that your intuition of whether a problem is solvable with Complete Search gets
better. We have provided a list of such problems, separated into several categories below.

Note that we will discuss more advanced search techniques later in Book 2, e.g., using
bit manipulation in recursive backtracking, harder state-space search, Meet in the Middle.
Then, we will get ourselves more familiar with some of the NP-hard/complete problems with
no special property that likely have no faster solutions than Complete Search. Lastly, we
will discuss a rarely used class of search heuristic algorithms: A* Search, Depth Limited
Search (DLS), and Iterative Deepening Search/A* (IDS/IDA*).

Finally, a few rule of thumbs below can be used to help identify problems that are solvable
with Complete Search. A problem is possibly a Complete Search problem if the problem:

• Asks to print all answers and the solution space can be as big as the search space,

• Has small search space (the total operations in the worst case is < 100M),

• Has suspiciously large time limit constraint and has lots of (early) pruning potentials,

• Can be pre-calculated,

• Is a known NP-hard/complete problem without any special property (see Book 2).

11Premature optimization is discouraged in Software Engineering.
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Programming exercises solvable using Complete Search:

a. Pre-calculate-able

1. Entry Level: UVa 00750 - 8 Queens Chess ... * (classic backtracking
problem; only 92 possible 8-queens positions)

2. UVa 00165 - Stamps * (requires some DP too; can be pre-calculated as
h and k are small)

3. UVa 10128 - Queue * (backtracking with pruning; try all N ! permutations
that satisfy the requirement; 13! will TLE; pre-calculate the results)

4. UVa 10276 - Hanoi Tower ... * (insert a number one by one; 1  N  50)

5. Kattis - cardtrick2 * (n  13, we can simulate the process using queue and
precalculate all 13 possible answers)

6. Kattis - foolingaround * (there are only 379 di↵erent values of N where Bob
wins; pre-calculateable)

7. Kattis - sgcoin * (we can either brute force short string message; precompute
all possible hash values; or come up with O(1) solution)

Extra UVa: 00167, 00256, 00347, 00861, 10177, 11085.

Extra Kattis: 4thought, chocolates, lastfactorialdigit, luckynumber, mancala,
primematrix.

b. Iterative (Two Nested Loops)

1. Entry Level: Kattis - pet * (very simple 2D nested loops problem)

2. UVa 00592 - Island of Logic * (key idea: there are only 35 ⇤ 2 possible
states: the status of each person and whether it is day or night)

3. UVa 01588 - Kickdown * (LA 3712 - NorthEasternEurope06; good iter-
ative brute force problem; beware of corner cases)

4. UVa 12488 - Start Grid * (2 nested loops; simulate overtaking process)

5. Kattis - blackfriday * (2D nested loops; frequency counting)

6. Kattis - closestsums * (sort and then do O(n2) pairings; also available at
UVa 10487 - Closest Sums)

7. Kattis - golombrulers * (2D nested loops; additional 1D loops for checking)

Extra UVa: 00105, 00617, 01260, 10041, 10570, 12583, 13018.

Extra Kattis: 8queens, antiarithmetic, bestrelayteam, bikegears, kafkaesque,
liga, peg, putovanje, reduction, register, summertrip, telephones, tourdefrance.

c. Iterative (Three or More Nested Loops, Easier)

1. Entry Level: UVa 00441 - Lotto * (6 nested loops; easy)

2. UVa 00735 - Dart-a-Mania * (3 nested loops; then count)

3. UVa 12515 - Movie Police * (3 nested loops)

4. UVa 12844 - Outwitting the ... * (5 nested loops; scaled down version
of UVa 10202; do observations first)

5. Kattis - cudoviste * (4 nested loops; the inner loops is just 2x2; 5 possibilities
of crushed cars; skip 2x2 area that contains building)

6. Kattis - npuzzle * (4 nested loops; easy)

7. Kattis - set * (4 nested loops; easy)

Extra UVa: 00154, 00626, 00703, 10102, 10662, 11059, 12498, 12801.

Extra Kattis: mathhomework, patuljci, safehouses.
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d. Iterative (Three or More Nested Loops, Harder)

1. Entry Level: UVa 00386 - Perfect Cubes * (4 nested loops with pruning)

2. UVa 10660 - Citizen attention ... * (7 nested loops; Manhattan distance)

3. UVa 11236 - Grocery Store * (3 nested loops for a, b, c; derive d from
a, b, c; check if you have 949 lines of output)

4. UVa 11804 - Argentina * (5 nested loops)

5. Kattis - calculatingdartscores * (6 nested loops; is a*i +b*j + c*k == n)

6. Kattis - lektira * (2 nested loops to try all 2 cutting points plus 1 more loop
to actually do the reversing of sub words)

7. Kattis - tautology * (try all 25 = 32 values with pruning; also available at
UVa 11108 - Tautology)

Extra UVa: 00253, 00296, 10360, 10365, 10483, 10502, 10973, 11342, 11548,
11565, 11959, 11975, 12337.

Extra Kattis: goblingardenguards, misa, medals.

e. Iterative (Permutation)

1. Entry Level: UVa 11742 - Social Constraints * (try all permutations)

2. UVa 00234 - Switching Channels * (LA 5173 - WorldFinals Phoenix94;
use next permutation; simulation)

3. UVa 01064 - Network * (LA 3808 - WorldFinals Tokyo07; permutation
of up to 5 messages; simulation; mind the word ‘consecutive’)

4. UVa 12249 - Overlapping Scenes * (LA 4994 - KualaLumpur10; try all
permutations; a bit of string matching)

5. Kattis - dancerecital * (try all R! permutations; compare adjacent routines)

6. Kattis - dreamer * (try all 8! permutations of digits; check if the date is
valid; output earliest valid date)

7. Kattis - veci * (try all permutations; get the one that is larger than X)

Extra UVa: 00140, 00146, 00418, 01209, 11412.

Extra Kattis: classpicture, towering, victorythroughsynergy.

f. Iterative (Combination)

1. Entry Level: UVa 00639 - Don’t Get Rooked * (generate 24⇥4 = 216

combinations and prune)

2. UVa 01047 - Zones * (LA 3278 - WorldFinals Shanghai05; try all 2n

subsets of towers to be taken; use inclusion-exclusion principle)

3. UVa 11659 - Informants * (try all 220 bitmask and check)

4. UVa 12694 - Meeting Room ... * (LA 6606 - Phuket13; it is safest to
just brute force all 220 possibilities; greedy solution should be possible too)

5. Kattis - geppetto * (try all 2N subsets of ingredients)

6. Kattis - squaredeal * (try all 3! permutations of rectangles and try all 23

combinations of rectangle orientations; test figure 1.a and 1.b conditions)

7. Kattis - zagrade * (try all subsets of bracket pairs to be removed)

Extra UVa: 00435, 00517, 11205, 12346, 12348, 12406, 13103.

Extra Kattis: buildingboundaries, doubleplusgood, perket.
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g. Try All Possible Answer(s)

1. Entry Level: Kattis - flexible * (try all possible answers)

2. UVa 00188 - Perfect Hash * (3 nested loops; try until an answer is found)

3. UVa 00725 - Division * (try all possible answers)

4. UVa 10908 - Largest Square * (4 nested loops; try all odd square lengths)

5. Kattis - communication * (try all possible bytes; apply the bitmask formula)

6. Kattis - islands * (try all possible subsets; prune the non-contiguous ones
(only 55 valid bitmasks between [0..1023]); check the ‘island’ property)

7. Kattis - walls * (try whether the answer is 1/2/3/4; or Impossible; use up to
4 nested loops)

Extra UVa: 00102, 00471.

Extra Kattis: cookingwater, gradecurving, heirsdilemma, owlandfox, park-
ing2, prinova, savingforretirement.

h. Mathematical Simulation (Complete Search), Easier

1. Entry Level: Kattis - easiest * (complete search; sum of digits)

2. UVa 00382 - Perfection * (do trial division)

3. UVa 01225 - Digit Counting * (LA 3996 - Danang07; N is small)

4. UVa 10346 - Peter’s Smoke * (interesting simulation problem)

5. Kattis - growlinggears * (physics of parabola; derivation; try all gears)

6. Kattis - trollhunt * (brute force; simple)

7. Kattis - videospeedup * (brute force; simple for loop; do as asked)

Extra UVa: 00100 12, 00371, 00654, 00906, 01583, 10783, 10879, 11001,
11150, 11247, 11313, 11877, 11934, 12527, 12938, 13059, 13131.

Extra Kattis: aboveaverage, dicecup, harshadnumbers, socialrunning, so-
daslurper, somesum, sumoftheothers, tri, zamka.

i. Mathematical Simulation (Complete Search), Harder

1. Entry Level: UVa 00616 - Coconuts, Revisited * (brute force up to
p
n)

2. UVa 11130 - Billiard bounces * (mirror the billiard table to the right
(and/or top); deal with one straight line instead of bouncing lines)

3. UVa 11254 - Consecutive Integers * (use sum of arithmetic progression;
brute force all values of r from

p
2n down to 1; stop at the first valid a)

4. UVa 11490 - Just Another Problem * (let missing people = 2 ⇤ a2,
thickness of soldiers = b, derive a formula involving a, b, and the given S)

5. Kattis - crackingrsa * (a bit number theory; solvable with complete search)

6. Kattis - falling * (rework the formula; complete search up to
p
D)

7. Kattis - thanosthehero * (for-loop from backwards)

Extra UVa: 00493, 00550, 00697, 00846, 10025, 10035, 11968, 12290, 12665,
12792, 12895.

Extra Kattis: disgruntledjudge, houselawn, lipschitzconstant, milestones, re-
peatingdecimal, robotopia, stopcounting, trick.

12The very first problem in the UVa online judge is about (Lothar) Collatz’s conjecture.
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j. Josephus Problem

1. Entry Level: UVa 00151 - Power Crisis * (the original Josephus problem)

2. UVa 01176 - A Benevolent Josephus * (LA 2346 - Dhaka01; special
case when k = 2; use Josephus recurrence; simulation)

3. UVa 10774 - Repeated Josephus * (repeated special case of Josephus
when k = 2)

4. UVa 11351 - Last Man Standing * (use general case Josephus recurrence)

5. Kattis - eenymeeny * (Josephus problem; small n; just simulate)

6. Kattis - musicalchairs * (Josephus variant; brute force)

7. Kattis - toys * (use general case Josephus recurrence)

Extra UVa: 00130, 00133, 00305, 00402, 00440, 10015, 10771.

Extra Kattis: coconut.

k. Recursive Backtracking (Easier)

1. Entry Level: UVa 10344 - 23 Out of 5 * (5 operands + 3 operators)

2. UVa 00729 - The Hamming ... * (generate all bit strings)

3. UVa 10576 - Y2K Accounting Bug * (generate all; prune; take max)

4. UVa 12840 - The Archery Puzzle * (simple backtracking)

5. Kattis - goodmorning * (we can use backtracking to generate all possible
(small) numbers that can be pressed according to the constraints)

6. Kattis - natjecanje * (4 options for each team with kayak: do nothing, pass
to left (if damaged), keep to self (if damaged), pass to right (if damaged))

7. Kattis - paintings * (try all possible paintings based on Catherine’s prefer-
ence; skip hideous color pairs)

Extra UVa: 00380, 00487, 00524, 00529, 00571, 00598, 00628, 00677, 00868,
10452, 10503, 10624, 10776, 10950, 11201, 11961.

Extra Kattis: draughts.

l. Recursive Backtracking (Harder)

1. Entry Level: UVa 00208 - Firetruck * (LA 5147 - WorldFinals SanAnto-
nio91; backtracking with some pruning)

2. UVa 00222 - Budget Travel * (LA 5161 - WorldFinals Indianapolis93;
cannot use DP ‘tank’ is floating-point; use backtracking)

3. UVa 00307 - Sticks * (sort the sticks in descending length; group similar
lengths; brute force the number of sticks; backtracking to check feasibility)

4. UVa 01262 - Password * (LA 4845 - Daejeon10; sort grid columns; process
common passwords in lexicographic order; skip two similar passwords)

5. Kattis - dobra * (try all possible 3n changes of ‘ ’ (to a vowel, an ‘L’, or other
consonant not ‘L’); prune invalid states; count valid states)

6. Kattis - fruitbaskets * (interesting backtracking problem; compute the small
numbers < 200; output all minus this value computed via backtracking)

7. Kattis - pagelayout * (a bit of geometry; O(2n ⇥ n2) iterative bitmask will
TLE; need to use recursive backtracking with pruning)

Extra UVa: 00129, 00301, 00331, 00416, 00433, 00565, 10001, 10063, 10094,
10460, 10475, 10582, 11052, 11753.

Extra Kattis: carvet, primes, solitaire.
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3.3 Divide and Conquer

Divide and Conquer (D&C) is a problem-solving paradigm in which a problem is made
simpler by ‘dividing’ it into smaller parts and then conquering each part. The steps:

1. Divide the original problem into sub-problems—usually by half or nearly half,

2. Find (sub)-solutions for each of these sub-problems—which are now easier,

3. If needed, combine the sub-solutions to get a complete solution for the main problem.

We have seen examples of the D&C paradigm in the previous sections of this book: Various
O(n log n) sorting algorithms (e.g., Merge Sort, Quick Sort, Heap Sort, Balanced BST Sort
a.k.a. Tree Sort) and Binary Search in Section 2.2 utilize this paradigm. The way data is
organized in Binary Heap, Binary Search Tree, Fenwick Tree, and Segment Tree in Section
2.3, 2.4.3, and 2.4.4 also relies upon the D&C paradigm.

3.3.1 Interesting Usages of Binary Search

In this subsection, we discuss the D&C paradigm in the well-known Binary Search algorithm.
We classify Binary Search as a ‘Divide’ and Conquer algorithm although one reference [38]
suggests that it should be actually classified as ‘Decrease (by-half)’ and Conquer as it does
not actually ‘combine’ the result. We highlight this algorithm because many contestants
know it, but not many are aware that it can be used in many other non-obvious ways.

Binary Search: The Ordinary Usage

Recall that the canonical usage of Binary Search is searching for an item in a static sorted
array. We check the middle of the sorted array to determine if it contains what we are
looking for. If it is or there are no more items to consider, stop. Otherwise, we can decide
whether the answer is to the left or right of the middle element and continue searching. As
the size of search space is halved (in binary fashion) after each check, the complexity of this
algorithm is O(log n). In Section 2.2, we have seen that there are built-in library routines
for this algorithm, e.g., the C++ STL lower bound, Java Collections.binarySearch, or
Python bisect.

This is not the only way to use binary search. The prerequisite for performing a binary
search—a static sorted sequence (array or vector)—can also be found in other uncommon
data structures such as in the root-to-leaf path of a tree (not necessarily binary nor complete)
that satisfies the min heap property. This variant is discussed below.

Binary Search on Uncommon Data Structures

This original problem is titled ‘My Ancestor’ and was used in the Thailand ICPC National
Contest 2009. Abridged problem description: Given a weighted (family) tree of up to N 
80K vertices with a special trait: vertex values are increasing from root to leaves13, find
the ancestor vertex closest to the root from a starting vertex v that has weight at least P .
There are up to Q  20K such o✏ine queries. Examine Figure 3.4—left. If P = 4, then
the answer is the vertex labeled with ‘B’ with value 5 as it is the ancestor of vertex v that
is closest to root ‘A’ and has a value of � 4. If P = 7, then the answer is ‘C’, with value 7.
If P � 9, there is no answer as there is no ancestor of v with a weight � 9.

The näıve solution is to perform a linear O(N) scan per query: starting from the given
vertex v, we move up the (family) tree until we reach the first vertex whose direct parent

13This is actually a (Min) Heap property albeit not on Binary Tree, see Section 2.3.1.
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Figure 3.4: My Ancestor (all 5 root-to-leaf paths are sorted)

has value < P or until we reach the root. If this vertex has value � P and it is not vertex
v itself, we have found the solution. As there are Q queries, this approach runs in O(QN)
(the input tree can be a sorted linked list of length N) and will get a TLE as N  80K and
Q  20K.

A better solution is to store all the 20K queries (we do not have to answer them im-
mediately). Traverse the tree just once starting from the root using the O(N) preorder
tree traversal algorithm (Section 4.6.2). This preorder tree traversal is slightly modified to
remember the partial root-to-current-vertex sequence as it executes. The array is always
sorted because the vertices along the root-to-current-vertex path have increasing weights,
see Figure 3.4 (right). The preorder tree traversal on the tree shown in Figure 3.4 (left)
produces the following partial root-to-current-vertex sorted array: {{3}, {3, 5}, {3, 5, 7},
{3, 5, 7, 8}, backtrack, {3, 5, 7, 9}, backtrack, backtrack, backtrack, {3, 8}, backtrack,
{3, 6}, {3, 6, 20}, backtrack, {3, 6, 10}, and finally {3, 6, 10, 20}, backtrack, backtrack,
backtrack (done)}.

During the O(N) preorder traversal, when we land on a queried vertex, we can perform a
O(logN) binary search (to be precise: lower bound) on the partial root-to-current-vertex
weight array to obtain the ancestor closest to the root with a value of at least P , recording
these solutions. Finally, we can perform a simple O(Q) iteration to output the results. The
overall time complexity of this approach is O(N +Q logN), which is now manageable.

Bisection Method

We have discussed the applications of Binary Searches in finding items in static sorted
sequences. However, the binary search principle14 can also be used to find the root of a
function (not necessarily a square root) that may be di�cult to compute directly.

For example, you buy a car with loan and now want to pay the loan in monthly install-
ments of d dollars for m months. Suppose the value of the car is originally v dollars and the
bank charges an interest rate of i% for any unpaid loan at the end of each month. What
is the amount of monthly installment d that you must pay (to 2 digits after the decimal
point)? Note that you pay this installment d at the end of the month after the interest of
that month has been calculated.

Suppose d = 576.19, m = 2, v = 1000, and i = 10%. After one month, your debt becomes
1000⇥(1.1)�576.19 = 523.81. After two months, your debt becomes 523.81⇥(1.1)�576.19 ⇡
0. If we are only given m = 2, v = 1000, and i = 10%, how would we determine that
d = 576.19? In other words, find the root d such that the debt payment function f(d) given
m, v, i gives ⇡ 0.

14We use the term ‘binary search principle’ to refer to the D&C approach of halving the range of possible
answers. The ‘binary search algorithm’ (finding index of an item in a sorted array), the ‘bisection method’
(finding the root of a function), and ‘binary search the answer’ (discussed in the next subsection) are all
instances of this principle.
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An easy way to solve this root finding problem is to use the bisection method. We pick
a reasonable range as a starting point. We want to find d within the range [a..b] where
a = 0.01 as we have to pay at least one cent and b = (1 + i%) ⇥ v as the earliest we can
complete the payment is m = 1 if we pay exactly (1 + i%) ⇥ v dollars after one month. In
this example, b = (1 + 0.1) ⇥ 1000 = 1100.00 dollars. For the bisection method to work15,
we must ensure that the function values of the two extreme points in the initial real range
[a..b], i.e., f(a) and f(b) have opposite signs (this is true for the computed a and b above,
f(a) is positive–installment d = a is too small and f(b) is negative–installment d = b is too
big) and function f(d) is a monotone16 function (this is true for function f(d) above).

a b d = a+b
2 status: f(d,m, v, i) action

0.01 1100.00 550.005 undershoot by 54.9895 increase d to a+b
2

550.005 1100.00 825.0025 overshoot by 522.50525 decrease d to a+b
2

550.005 825.0025 687.50375 overshoot by 233.757875 decrease d
550.005 687.50375 618.754375 overshoot by 89.384187 decrease d
550.005 618.754375 584.379688 overshoot by 17.197344 decrease d
550.005 584.379688 567.192344 undershoot by 18.896078 increase d
567.192344 584.379688 575.786016 undershoot by 0.849366 increase d
. . . . . . . . . a few iterations later . . . . . .
. . . . . . 576.190476 stop; error is now less than ✏ answer = 576.19

Table 3.1: Running Bisection Method on the Example Function

Notice that bisection method only requires O(log2((b � a)/✏)) iterations to get an answer
that is good enough (the error is smaller than the threshold error ✏ that we can tolerate). In
this example, bisection method only takes log2 1099.99/✏ tries. Using a small ✏ = 1e-9, this
yields only ⇡ 40 iterations. Even if we use a smaller ✏ = 1e-15, we will still only need ⇡ 60
tries. Notice that the number of tries is small. The bisection method is much more e�cient
compared to exhaustively evaluating each possible value of d =[0.01..1100.00]/✏ for this
example function. Note that the bisection method can be written with a loop that tries the
values of d ⇡ 40 to 60 times (see our implementation below).

Binary Search the Answer (BSTA)

The abridged version of UVa 11935 - Through the Desert is as follows: Imagine that you are
an explorer trying to cross a desert. You use a jeep with a ‘large enough’ fuel tank – initially
full. You encounter a series of events throughout your journey such as ‘drive (that consumes
fuel)’, ‘experience gas leak (further reduces the amount of fuel left)’, ‘encounter gas station
(allowing you to refuel to the original capacity of your jeep’s fuel tank)’, ‘encounter mechanic
(fixes all leaks)’, or ‘reach goal (done)’. You need to determine the smallest possible fuel
tank capacity for your jeep to be able to reach the goal. The answer must be precise to three
digits after decimal point.

If we know the jeep’s fuel tank capacity, then this problem is just a simulation problem.
From the start, we can simulate each event in order and determine if the goal can be reached
without running out of fuel. The problem is that we do not know the jeep’s fuel tank
capacity—this is the value that we are looking for.

15Note that the requirements for the bisection method (which uses the binary search principle) are slightly
di↵erent from the binary search algorithm which needs a sorted array.

16In Mathematics, a function f is called a monotone function if and only if it is either entirely non-
increasing or entirely non-decreasing, e.g., see Figure 3.5—left.
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From the problem description, we can compute that the range of possible answers is
between [0.000..10000.000], with 3 digits of precision. However, there are 10M such
possibilities. Trying each value sequentially will get us a TLE verdict.

Fortunately, this problem has a property that we can exploit. Suppose that the correct
answer is x. Setting your jeep’s fuel tank capacity to any value between [0.000..x-0.001]
will not bring your jeep safely to the goal event. On the other hand, setting your jeep fuel
tank volume to any value between [x..10000.000] will bring your jeep safely to the goal
event, usually with some fuel left. This monotone property allows us to perform Binary
Search the Answer x (abbreviated as BSTA)! Notice that BSTA (on Boolean monotone
function can(x), see Figure 3.5—right) is very similar to Bisection method (on more general
monotone function f(x), see Figure 3.5—left).

Figure 3.5: Monotone Function; Left: Bisection; Right: BSTA

We can use the following code to obtain the solution for this problem.

const double EPS = 1e-9; // this EPS is adjustable

bool can(double x) { // details omitted
// return true if the jeep can reach goal with fuel tank capacity of x
// return false otherwise

}

// inside int main()
// Binary Search the Answer (BSTA), then simulate
double lo = 0.0, hi = 10000.0;
while (fabs(hi-lo) > EPS) { // answer is not found yet

double mid = (lo+hi) / 2.0; // try the middle value
can(mid) ? hi = mid : lo = mid; // then continue

}
printf("%.3lf\n", hi); // we have the answer

Note that some programmers choose to use a constant number of refinement iterations instead
of allowing the number of iterations to vary dynamically to avoid precision errors when testing
fabs(hi-lo) > EPS and thus being trapped in an accidental infinite loop. The only changes
required to implement this approach are shown below. The rest are the same as above.

double lo = 0.0, hi = 10000.0;
for (int i = 0; i < 50; ++i) { // log_2(10000/1e-9) ~= 43

double mid = (lo+hi) / 2.0; // looping 50x is enough
can(mid) ? hi = mid : lo = mid; // ternary operator

}

Source code: ch3/dnc/UVa11935.cpp|java|py|ml
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Exercise 3.3.1.1: There is an alternative solution for UVa 11935 that does not use ‘binary
search the answer’ technique. Can you spot it?

Exercise 3.3.1.2: The example shown here involves binary-searching the answer where the
answer is a floating point number. Modify the code to solve Binary Search the Answer
(BSTA) problems where the answer lies in an integer range!

3.3.2 Ternary Search

Given a unimodal function f(x) and a range [L..R], find x such that f(x) is minimum17.
This unimodal function f(x) in a range [L..R] is formally defined as follows: 8a, b with
L  a < b  x, we have f(a) > f(b), and 8a, b with x  a < b  R, we have f(a) < f(b)
(that is, f(x) is strictly decreasing and then strictly increasing), see Figure 3.6.

Figure 3.6: Ternary Search on a Unimodal Function

The classic binary search that we have discussed in Section 3.3.1 cannot be applied on such
a problem. We need another ‘variant’ of binary search called the ternary search18.

The basic idea is as follows. While binary search divides the range into two and decides
which half to explore, ternary search divides the range into three and decide which two-
thirds to explore. Let a unimodal function f(x) on a range [lo..hi]. Let’s take any two
points m1 and m2 inside this range such that lo < m1 < m2 < hi. However, for simplicity
and performance, we set delta = (hi� lo)/3.0, m1 = lo+ delta and m2 = hi� delta so that
m1 is approximately 1

3 from lo and m2 is approximately 1
3 from hi (or 2

3 from lo). Then,
there are three possibilities:

1. If f(m1) > f(m2), then the minimum cannot be in the left subrange [lo..m1] and we
should continue exploring subrange [m1..hi].

2. If f(m1) < f(m2), then it is the opposite of the first possibility. In this case, the
minimum cannot be on the right subrange [m2..hi] and we should continue exploring
subrange [lo..m2]. This scenario is shown in Figure 3.6.

3. If f(m1) = f(m2), a rare case, then the ternary search should be conducted in
[m1..m2]. However, in order to simplify the code, we will just assume that f(m1) 
f(m2) and apply the second possibility above.

After O(log(hi� lo)) steps, the range will be small enough than ✏ and we can stop. This is
e�cient. The key part of Kattis - tricktreat code that uses ternary search is shown below.

17We can reverse the problem to find x such that f(x) is maximum by reversing the signs of the constraints.
18Unimodal functions are rarely found in programming contests, therefore ternary search is also rarely

used in programming contests.
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for (int i = 0; i < 50; ++i) { // similar as BSTA
double delta = (hi-lo)/3.0; // 1/3rd of the range
double m1 = lo+delta; // 1/3rd away from lo
double m2 = hi-delta; // 1/3rd away from hi
(f(m1) > f(m2)) ? lo = m1 : hi = m2; // f is unimodal

}

Source code: ch3/dnc/tricktreat.cpp|java|py|ml

3.3.3 Divide and Conquer in Programming Contests

The Divide and Conquer (D&C) paradigm is usually utilized through popular algorithms:
Binary Search and its variants, Ternary Search, Merge/Quick/Heap/Balanced BST (Tree)
Sort, Inversion Index (modified Merge Sort), and data structures: Binary Heap, (Balanced)
Binary Search Tree, Order Statistics Tree, Fenwick Tree, Segment Tree, etc. However—based
on our experience, we reckon that the most commonly used form of the D&C paradigm in
programming contests is the Binary Search principle. If you want to do well in programming
contests, please spend time practicing the various ways to apply it.

Once you are more familiar with the ‘Binary Search the Answer’ (abbreviated as BSTA)
technique discussed in this section, please explore Book 2 for a few more programming
exercises that use this technique with other algorithms that we will discuss in the later parts
of this book.

We notice that there are not that many D&C problems outside of our binary search
categorization. Most D&C solutions are ‘geometry-related’ or ‘problem specific’, and thus
cannot be discussed in detail in this book. However, we will encounter some of them later,
e.g.,: Matrix Power, BSTA plus other algorithms, Square Root/Heavy-Light Decomposition,
and Closest Pair Problem.

Programming exercises solvable using Divide and Conquer:

a. Binary Search

1. Entry Level: UVa 11057 - Exact Sum * (sort; target pair problem)

2. UVa 11621 - Small Factors * (generate; sort; upper bound)

3. UVa 12192 - Grapevine * (input array is specially sorted; lower bound)

4. UVa 12965 - Angry Birds * (sort producer/consumer prices; the answer
is one of the prices mentioned; use binary searches to count the answer)

5. Kattis - firefly * (sort stalactites vs stalagmites separately; brute force height;
binary search the obstacles hit)

6. Kattis - outofsorts * (do O(log n) binary searches on unsorted array n times)

7. Kattis - roompainting * (sort the cans at shop (can be used more than once);
use lower bound for what Joe needs at shop)

Extra UVa: 00679, 00957, 10057, 10077, 10474, 10567, 10611, 10706, 10742,
11876.

Extra Kattis: synchronizinglists.

Others: Thailand ICPC National Contest 2009 - My Ancestor.
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b. Bisection Method and BSTA (Easier)

1. Entry Level: Kattis - carefulascent * (BSTA + Physics simulation)

2. UVa 12032 - The Monkey ... * (BSTA + simulation)

3. UVa 12190 - Electric Bill * (BSTA + algebra)

4. UVa 13142 - Destroy the Moon ... * (BSTA + Physics simulation)

5. Kattis - freeweights * (BSTA + simulation; Mathematical observation)

6. Kattis - monk * (BSTA + simulation; cool)

7. Kattis - suspensionbridges * (BSTA + Maths; be careful of precision error)

Extra UVa: 10341, 11413, 11881, 11935, 12791.

Extra Kattis: expeditiouscubing, financialplanning, hindex, htoo, rainfall2,
slalom2, smallschedule, speed, svada, taxing.

Others: IOI 2010 - Quality of Living (BSTA).

c. Ternary Search and Others

1. Entry Level: UVa 00183 - Bit Maps * (simple exercise of DnC)

2. UVa 10385 - Duathlon * (the function is unimodal; ternary search)

3. UVa 11147 - KuPellaKeS BST * (implement the given recursive DnC)

4. UVa 12893 - Count It * (convert the given code into recursive DnC)

5. Kattis - a1paper * (division of A1 paper is a kind of DnC principle)

6. Kattis - ceiling * (LA 7578 - WorldFinals Phuket16; BST insertion+tree
equality check; also available at UVa 01738 - Ceiling Function)

7. Kattis - goingtoseed * (divide to search into four regions; extension of bi-
nary/ternary search concept)

Extra UVa: 00608.

Extra Kattis: cantor, euclideantsp, jewelrybox, qanat, reconnaissance, sretan,
sylvester, tricktreat, zipline.

Others: IOI 2011 - Race (DnC), IOI 2011 - Valley (ternary search)
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3.4 Greedy

An algorithm is said to be greedy if it makes the locally optimal choice at each step with the
hope of eventually reaching the globally optimal solution. In some cases, greedy works—the
solution is short and runs e�ciently. For many others, however, it does not. As discussed
in other typical Computer Science textbooks, e.g., [5, 35], a problem must exhibit these two
properties in order for a greedy algorithm to work:

1. It has optimal sub-structures.
Optimal solution to the problem contains optimal solutions to the sub-problems.

2. It has the greedy property (di�cult or not cost-e↵ective19 to prove during contest).
If we make a choice that seems like the best at the moment and proceed to solve the
remaining sub-problem, we reach the optimal solution. We will never have to reconsider
our previous choices.

3.4.1 Examples

Coin Change - The Greedy Version

Problem description: Given a target amount V cents and a list of denominations of n coins,
i.e., we have coinValue[i] (in cents) for coin types i 2 [0..n-1], what is the minimum
number of coins that we must use to represent amount V ? Assume that we have an unlimited
supply of coins of any type. Example: If n = 4, coinValue = {25, 10, 5, 1} cents20, and
we want to represent V = 42 cents, we can use this Greedy algorithm: Select the largest coin
denomination which is not greater than the remaining amount, i.e., 42-25 = 17 ! 17-10 =
7 ! 7-5 = 2 ! 2-1 = 1 ! 1-1 = 0, a total of 5 coins. This is optimal.

The problem above has the two ingredients required for a successful greedy algorithm:

1. It has optimal sub-structures.
We have seen that in our quest to represent 42 cents, we use 25+10+5+1+1.
This is an optimal 5-coin solution to the original problem!
Optimal solutions to sub-problem are contained within the 5-coin solution, i.e.,
a. To represent 17 cents, we use 10+5+1+1 (part of the solution for 42 cents),
b. To represent 7 cents, we use 5+1+1 (also part of the solution for 42 cents), etc.

2. It has the greedy property: given every amount V , we can greedily subtract V with the
largest coin denomination which is not greater than this amount V . It can be proven
(not shown here for brevity) that using any other strategies will not lead to an optimal
solution, at least for this set of coin denominations.

However, this greedy algorithm does not work for all sets of coin denominations. Take for
example {4, 3, 1} cents. To make 6 cents with that set, a greedy algorithm would choose 3
coins {4, 1, 1} instead of the optimal solution that uses 2 coins {3, 3}. The general version
of this problem is revisited later in Section 3.5.2 (Dynamic Programming) and in Section on
NP-hard/complete problems in Book 2.

19It may be easier/faster to just code the usually simple Greedy algorithm implementation and submit
the code to see if it is already Accepted or not.

20The presence of the unlimited 1-cent coin ensures that we can always make every value.
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Load Balancing - The Greedy Version: UVa 00410 - Station Balance

Given 1  C  5 chambers which can store 0, 1, or 2 specimens, 1  S  2C specimens
and a list M of the masses of the S specimens, determine which chamber should store each
specimen in order to minimize ‘imbalance’. See Figure 3.7 for a visual explanation21.

Let A = (
PS

j=1 Mj)/C, i.e., A is the average of the total mass in each of the C chambers.

Let Imbalance =
PC

i=1 |Xi � A|, i.e., the sum of di↵erences between the total mass in each
chamber w.r.t. A where Xi is the total mass of specimens in chamber i.

Figure 3.7: Visualization of UVa 00410 - Station Balance

This version of Load Balancing problem can be solved using a greedy algorithm, but to arrive
at that solution, we have to make several observations.

Figure 3.8: UVa 00410 - Observations

Observation 1: If there exists an empty chamber, it is usually beneficial and never worse to
move one specimen from a chamber with two specimens to the empty chamber! Otherwise,
the empty chamber contributes more to the imbalance as shown in Figure 3.8, top.

Observation 2: If S > C, then S � C specimens must be paired with a chamber already
containing other specimens—the Pigeonhole principle! See Figure 3.8, bottom.

The key insight is that the solution to this problem can be simplified with sorting:
if S < 2C, add 2C � S dummy specimens with mass 0. For example, C = 3, S = 4,
M = {5, 1, 2, 7} ! C = 3, S = 6,M = {5, 1, 2, 7, 0, 0}. Then, sort the specimens on their
mass such that M1  M2  . . .  M2C�1  M2C . In this example, M = {5, 1, 2, 7, 0, 0} !
{0, 0, 1, 2, 5, 7}. By adding dummy specimens and then sorting them, a greedy strategy
becomes ‘apparent’:

• Pair the specimens with masses M1&M2C and put them in chamber 1, then

• Pair the specimens with masses M2&M2C�1 and put them in chamber 2, and so on . . .

21Since C  5 and S  10, we can actually use a Complete Search solution for this problem. However,
this problem is simpler to solve using the Greedy algorithm.
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This greedy algorithm—known as load balancing—works for this version (pairing) of Load
Balancing problem22! See Figure 3.9.

Figure 3.9: UVa 00410 - Greedy Solution

It is hard to impart the techniques used in deriving this greedy solution. Finding greedy
solutions is an art, just as finding fast enough pruning strategies in Complete Search solutions
requires creativity. A tip that arises from this example: if there is no obvious greedy strategy,
try sorting the data or introducing some tweak and see if a greedy strategy emerges.

Interval Covering: Kattis - grass/UVa 10382 - Watering Grass

Abridged problem description: n sprinklers are installed in a horizontal strip of grass L
meters long and W meters wide. Each sprinkler is centered vertically in the strip. For each
sprinkler, we are given its position as the distance from the left end of the center line and
its radius of operation. What is the minimum number of sprinklers that should be turned
on in order to water the entire strip of grass? Constraint: n  10 000. For an illustration of
the problem, see Figure 3.10—left side. The answer for this test case is 6 sprinklers (those
labeled with {A, B, D, E, F, H}). There are 2 unused sprinklers: {C, G}.

Figure 3.10: Kattis - grass/UVa 10382 - Watering Grass

We cannot solve this problem with a brute force strategy that tries all possible subsets of
sprinklers to be turned on since the number of sprinklers can go up to 10 000. It is definitely
infeasible to try all 210 000 possible subsets of sprinklers.

This problem is actually a variant of the well-known greedy problem called the interval
covering problem. However, it includes a simple geometric twist. The original interval
covering problem deals with intervals. This problem deals with sprinklers that have circles of
influence in a horizontal area rather than simple intervals. We first have to transform/reduce
the problem to resemble the standard interval covering problem.

22The general case of this Load-Balancing problem is actually NP-complete.
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See Figure 3.10—right side. We can convert these circles and horizontal strips into
intervals. We can compute dx = sqrt(R2 - (W/2)2). Suppose a circle is centered at (x,
y). The interval represented by this circle is [x-dx..x+dx]. To see why this works, notice
that the additional circle segment beyond dx away from x does not completely cover the
strip in the horizontal region it spans. If you have issues with this geometric transformation,
see geometry topics in Book 2 which discusses basic operations involving a right triangle.

Now that we have transformed the original problem into the interval covering problem,
we can use the following Greedy algorithm. First, the Greedy algorithm sorts the intervals
by increasing left endpoint and by decreasing right endpoint if ties arise. Then, the Greedy
algorithm processes the intervals one at a time. It takes the interval that covers ‘as far
right as possible’ and yet still produces uninterrupted coverage from the leftmost side to the
rightmost side of the horizontal strip of grass. It ignores intervals that are already completely
covered by other (previous) intervals. This is also called as Sweep Line algorithm.

For the test case shown in Figure 3.10—left side, this Greedy algorithm first sorts the
intervals to obtain the sequence {A, B, C, D, E, F, G, H}. Then it processes them one by
one. First, it takes ‘A’ (it has to), takes ‘B’ (connected to interval ‘A’), ignores ‘C’ (as it is
embedded inside interval ‘B’), takes ‘D’ (it has to, as intervals ‘B’ and ‘E’ are not connected
if ‘D’ is not used), takes ‘E’, takes ‘F’, ignores ‘G’ (as taking ‘G’ is not ‘as far right as
possible’ and does not reach the rightmost side of the grass strip), takes ‘H’ (as it connects
with interval ‘F’ and covers more to the right than interval of ‘G’ does, going beyond the
rightmost end of the grass strip). In total, we select 6 sprinklers: {A, B, D, E, F, H}. This
is the minimum possible number of sprinklers for this test case.

sort(sprinkler, sprinkler+n, cmp); // sort the sprinklers
bool possible = true;
double covered = 0.0;
int ans = 0;
for (int i = 0; (i < n) && possible; ++i) {

if (covered > l) break; // done
if (sprinkler[i].x_r < covered+EPS) continue; // inside prev interval
if (sprinkler[i].x_l < covered+EPS) { // can cover

double max_r = -1.0;
int max_id;
for (int j = i; (j < n) && (sprinkler[j].x_l < covered+EPS); ++j)

if (sprinkler[j].x_r > max_r) { // go to right to find
max_r = sprinkler[j].x_r; // interval with
max_id = j; // the largest coverage

}
++ans;
covered = max_r; // jump here
i = max_id;

}
else

possible = false;
}
if (!possible || (covered < l)) printf("-1\n");
else printf("%d\n", ans);

Source code: ch3/greedy/grass UVa10382.cpp|java|py
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Greedy (Bipartite) Matching: Kattis - loowater/UVa 11292 - The Dragon of ...

Abridged problem description: There are n dragon heads andm knights (1  n,m  20 000).
Each dragon head has a diameter and each knight has a height. A dragon head with diameter
D can be chopped o↵ by a knight with height H if D  H. A knight can only chop o↵ one
dragon head. Given a list of diameters of the dragon heads and a list of heights of the
knights, is it possible to chop o↵ all the dragon heads? If yes, what is the minimum total
height of the knights used to chop o↵ the dragons’ heads?

There are several ways to solve this problem, but we will illustrate one of the easiest.
This problem is a bipartite matching problem (this will be discussed in more detail in Section
4.6.3 and in Book 2), in the sense that we are required to match (pair) knights to dragons in
a minimal cost way (see Figure 3.11—left side, before sorting). However, this problem can
be solved greedily: a dragon head with a certain diameter D should be chopped by a knight
with the shortest height H such that D  H (see Figure 3.11—right side, after sorting).

Figure 3.11: Kattis - loowater/UVa 11292 - The Dragon of ...

However, the input is given in an arbitrary order. This is frequently done by the problem
authors to mask the greedy strategy. If we sort both the array of dragon head diameters head
and knight heights height in O(n log n+m logm), we can use the following O(max(n,m))
scan to determine the answer. This is yet another example where sorting the input can help
produce the required greedy strategy.

sort(D.begin(), D.end()); // sorting is an important
sort(H.begin(), H.end()); // pre-processing step
int gold = 0, d = 0, k = 0; // both arrays are sorted
while ((d < n) && (k < m)) { // while not done yet

while ((k < m) && (D[d] > H[k])) ++k; // find required knight k
if (k == m) break; // loowater is doomed :S
gold += H[k]; // pay this amount of gold
++d; ++k; // next dragon & knight

}
if (d == n) printf("%d\n", gold); // all dragons are chopped
else printf("Loowater is doomed!\n");

Source code: ch3/greedy/loowater UVa11292.cpp|java|py|ml

Involving Priority Queue: Kattis - ballotboxes/UVa 12390 - Distributing ...

Problem description: Given N (1  N  500K) cities—each city must be assigned at least
one box, the population size ai of each city i (1  ai  5M)—each person can only vote
in his/her assigned box in his/her own city, and B ballot boxes (N  B  2M), distribute
these B boxes to N cities so that the maximum number of people assigned to vote in one
box is minimized.

For example, if we have N = 4 cities with sizes {120, 2680, 3400, 200} and B = 6 ballot
boxes, we should give {1, 2, 2, 1} boxes to them. This way, the two largest cities can use
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their extra boxes to reduce the number of people assigned to vote in one box as follows: {120,
1340+1340, 1700+1700, 200}. We output 1700 as maximum number of people assigned to
one box in the most e�cient assignment.

It should be clear that we should sort the cities by non-increasing population sizes first.
The first extra ballot box should be given to the largest city with population a0 to reduce
its workload from a0 to a0

2 . However, how should we give the second extra box? If the first
city has a0 has more than twice size than a1, we should actually give another ballot box to
the first city to further reduce its workload from a0

2 to a0
3 . But what if a0 > 3⇥ a1?

By now we should realize that this greedy process has to actually be simulated as the
box ratio information in a certain city i keeps changing as we give more box(es) to city
i. If we keep re-sorting these ratios of the N cities, we will get TLE as N is up to 500K.
However, there is a data structure that allows us to maintain dynamic ordering of the N
cities: Priority Queue (see Section 2.3.1 or Section 2.3.3). The simple greedy-based Priority
Queue simulation is as follows:

typedef tuple<double, int, int> dii; // (ratio r, num, den)

// inside int main()
priority_queue<dii> pq; // max pq
for (int i = 0; i < N; ++i) {

int a; scanf("%d", &a);
pq.push({(double)a/1.0, a, 1}); // initially, 1 box/city

}
B -= N; // remaining boxes
while (B--) { // extra box->largest city

auto [r, num, den] = pq.top(); pq.pop(); // current largest city
pq.push({num/(den+1.0), num, den+1}); // reduce its workload

}
printf("%d\n", (int)ceil(get<0>(pq.top()))); // the final answer

} // all other cities in the max pq will have equal or lesser ratio

Notice that Prim’s (in Section 4.3) and Dijkstra’s (in Section 4.4) algorithms are essentially
greedy algorithms using Priority Queue too.

Source code: ch3/greedy/ballotboxes UVa12390.cpp|py (BSTA)

Exercise 3.4.1.1*: Which of the following sets of coins (all in cents) are solvable using the
greedy ‘coin change’ algorithm discussed in this section? If the greedy algorithm fails on a
certain set of coin denominations, determine the smallest counter example V cents on which
it fails to be optimal. See [46] for more details about finding such counter examples.

1. S1 = {10, 7, 5, 4, 1}
2. S2 = {64, 32, 16, 8, 4, 2, 1}
3. S3 = {13, 11, 7, 5, 3, 2, 1}
4. S4 = {7, 6, 5, 4, 3, 2, 1}
5. S5 = {21, 17, 11, 10, 1}
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Exercise 3.4.1.2*: There is an alternative (faster) solution for Kattis - ballotboxes/UVa
12390 - Distributing Ballot Boxes using Binary Search the Answer (BSTA) discussed in Sec-
tion 3.3.1. Study ch3/greedy/ballotboxes UVa12390 bsta.py for this alternative solution!

Exercise 3.4.1.3*: Another classic Greedy algorithm that uses Priority Queue in its im-
plementation is the Hu↵man Code [5, 35] construction algorithm. Study this algorithm and
try to solve Kattis - weather (it is Hu↵man Code plus some Mathematics techniques)!

3.4.2 Greedy Algorithm in Programming Contests

In this section, we have discussed a few classical problems solvable with Greedy algorithms:
Coin Change (the special case), Load Balancing (the special case shown in this section),
Interval Covering, Greedy Bipartite Matching, and Greedy Algorithm involving Priority
Queue. For these classical problems, it is helpful to memorize their solutions (for this case,
ignore that we have said earlier in the chapter about not relying too much on memorization).
We have also discussed an important problem solving strategy usually applicable to greedy
problems: sorting the (static) input data or using Priority Queue to maintain the ordering
of (dynamic) input data to elucidate hidden greedy strategies.

There are two other classical examples of Greedy algorithms in this book, e.g., Kruskal’s
(sorting static list of edges) plus Prim’s (dynamic ordering of edges using Priority Queue)
algorithms for the Minimum Spanning Tree (MST) problem (see Section 4.3) and Dijkstra’s
(dynamic ordering of vertices based on increasing shortest path values using Priority Queue)
algorithm for the Single-Source Shortest Paths (SSSP) problem (see Section 4.4.3). There
are many more known Greedy algorithms that we do not discuss in this book as they are too
‘problem specific’ and rarely appear in programming contests, e.g., Hu↵man Code [5, 35],
Fractional Knapsack [5, 35], some Job Scheduling problems, etc.

However, today’s programming contests (both IOI and ICPC) rarely involve the purely
canonical versions of these classical problems. Using Greedy algorithms to attack a ‘non
classical’ problem is usually risky. A Greedy algorithm will normally not encounter the TLE
response as it is often lightweight, but instead tends to obtain WA verdicts23. Proving that a
certain ‘non classical’ problem has optimal sub-structure and greedy property during contest
time may be di�cult or time consuming, so a competitive programmer should usually use
this rule of thumb:

If the input size is ‘small enough’ to accommodate the time complexity of either Complete
Search or Dynamic Programming approaches (see Section 3.5), then use these approaches
as both will ensure a correct answer. Only use a Greedy algorithm if the input size given in
the problem statement are too large even for the best Complete Search or DP algorithm.

Having said that, it is increasingly true that problem authors try to set the input bounds
of problems that allow for Greedy strategies to be in an ambiguous range so that contestants
cannot use the input size to quickly determine the required algorithm!

We have to remark that it is quite challenging to come up with new ‘non classical’
Greedy problems. Therefore, the number of such novel Greedy problems used in competitive
programming is lower than that of Complete Search or Dynamic Programming problems.
This strengthen our tips above on memorizing the solutions for some of the classical problems
solvable with Greedy algorithms.

23Note that there is no wrong answer submission penalty in the IOI. If the greedy idea does not take too
long to code, it may be beneficial to just test the greedy idea by simply coding and then submitting your
implementation to the judging system.
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Starred programming exercises solvable using Greedy algorithm24:

• Classical

1. Entry Level: UVa 10020 - Minimal Coverage * (interval covering)

2. UVa 01193 - Radar Install... * (LA 2519 - Beijing02; interval covering)

3. UVa 11264 - Coin Collector * (coin change variant)

4. UVa 12321 - Gas Station * (interval covering)

5. Kattis - classrooms * (variant of interval covering; multiple rooms)

6. Kattis - froshweek2 * (sort; similar to UVa 11292; greedy bipartite matching)

7. Kattis - squarepegs * (convert square to circular; sort; greedy matching)

Extra UVa: 00410, 10249, 11389, 12210, 12405.

Extra Kattis: avoidland, color, fishmongers, grass, inflation, intervalcover,
loowater, messages.

Extra: IOI 2011 - Elephants (greedy solution up to subtask 3).

• Involving Sorting (Or The Input Is Already Sorted), Easier

1. Entry Level: UVa 11369 - Shopaholic *

2. UVa 11729 - Commando War *

3. UVa 11900 - Boiled Eggs *

4. UVa 13109 - Elephants *

5. Kattis - icpcteamselection *

6. Kattis - minimumscalar *

7. Kattis - shopaholic *

Extra UVa: 10763, 10785, 11269, 12485, 13031.

Extra Kattis: acm2 aprizenoonecanwin, akcija, fallingapart, fridge, gettowork,
pikemaneasy, planetaris, plantingtrees, redistribution, standings, textmessag-
ing, woodcutting.

• Involving Sorting (Or The Input Is Already Sorted), Harder

1. Entry Level: UVa 12673 - Football * (LA 6530 - LatinAmerica13)

2. UVa 10026 - Shoemaker’s Problem *

3. UVa 12834 - Extreme Terror *

4. UVa 13054 - Hippo Circus *

5. Kattis - airconditioned *

6. Kattis - birds *

7. Kattis - delivery *

Extra UVa: 10037.

Extra Kattis: andrewant, ceremony, dasort, fairdivision, help, intergalac-
ticbidding, trip2007, w↵nproof.

24Hints other than the classical ones are omitted to keep the problems interesting as many greedy problems
became just an implementation exercises after their greedy strategies are revealed.
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• Involving Priority Queue

1. Entry Level: Kattis - ballotboxes * (also available at UVa 12390 - Distributing
Ballot Boxes)

2. UVa 01153 - Keep the Customer ... *

3. UVa 10954 - Add All *

4. UVa 13177 - Orchestral scores *

5. Kattis - canvas *

6. Kattis - vegetables *

7. Kattis - workstations *

Extra Kattis: convoy, entertainmentbox, simplification.

• Non Classical, Easier

1. Entry Level: UVa 10656 - Maximum Sum (II) *

2. UVa 10340 - All in All *

3. UVa 11520 - Fill the Square *

4. UVa 12482 - Short Story Competition *

5. Kattis - ants * (also available at UVa 10714 - Ants)

6. Kattis - bank *

7. Kattis - marblestree * (also available at UVa 10672 - Marbles on a tree)

Extra UVa: 10152, 10440, 10602, 10700, 11054, 11532.

Extra Kattis: applesack, driver, haybales, horrorfilmnight, pripreme, simplic-
ity, skocimis, teacherevaluation.

• Non Classical, Harder

1. Entry Level: UVa 11491 - Erasing and Winning *

2. UVa 10821 - Constructing BST *

3. UVa 11583 - Alien DNA *

4. UVa 11890 - Calculus Simplified *

5. Kattis - dvds *

6. Kattis - stockbroker *

7. Kattis - virus *

Extra UVa: 00311, 00668, 10718, 10982, 11157, 11230, 11240, 11330, 11335,
11567, 12124, 12516, 13082.

Extra Kattis: cardtrading, logland, playground. wordspin.

Also see some greedy Prim’s/Kruskal’s algorithm to solve the Minimum
Spanning Tree problem (Section 4.3.2 and 4.3.3), and greedy Dijkstra’s al-
gorithm to solve the Single-Source Shortest Paths problem (Section 4.4.3).
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3.5 Dynamic Programming

Dynamic Programming (from now on abbreviated as DP) is perhaps the most challenging
problem-solving technique among the four paradigms discussed in this chapter. Thus, make
sure that you have mastered the material mentioned in the previous chapters/sections before
reading this section. Also, prepare to see lots of recursions and recurrence relations!

The key skills that you have to develop in order to master DP are the abilities to determine
the problem states and to determine the relationships or transitions between the current
problem and its sub-problems. We have used these skills earlier in recursive backtracking
(see Section 3.2.2). In fact, DP problems with small input size constraints may already be
solvable with recursive backtracking25.

If you are new to the DP technique, you can start by assuming that (the ‘top-down’) DP
is a kind of ‘intelligent’ or ‘faster’ recursive backtracking. In this section, we will explain the
reasons why DP is often faster than recursive backtracking for problems amenable to it.

DP is primarily26 used to solve optimization problems and counting problems. If you
encounter a problem that says “minimize this” or “maximize that” or “count the ways to
do that”, then there is a (high) chance that it is a DP problem. Most DP problems in
programming contests only ask for the optimal/total value and not the optimal solution
itself, which often makes the problem easier to solve by removing the need to backtrack and
produce the solution. However, some harder DP problems also require the optimal solution
to be returned in some fashion. We will continually refine our understanding of DP in this
section. Later in Book 2, we will learn a bit more about some of these DP solutions in the
context of NP-hard/complete problems.

3.5.1 DP Illustration

We will illustrate the concept of Dynamic Programming with an example problem: UVa
11450 - Wedding Shopping. Abridged problem statement: Given di↵erent options for each
garment (e.g., 3 shirt models, 2 belt models, 4 shoe models, . . . ) and a certain limited
budget, our task is to buy one model of each garment. We cannot spend more money than
the given budget, but we want to spend the maximum possible amount.

The input consists of two integers 1  M  200 and 1  C  20, where M is the budget
and C is the number of garments that you have to buy, followed by some information about
the C garments. For the garment g 2 [0..C-1], we will receive an integer 1  K  20
which indicates the number of di↵erent models there are for that garment g, followed by K
integers indicating the price of each model 2 [1..K] of that garment g.

The output is one integer that indicates the maximum amount of money we can spend
purchasing one of each garment without exceeding the budget. If there is no solution due to
the small budget given to us, then simply print “no solution”.

Suppose we have the following test case A with M = 20, C = 3:
Price of the 3 models of garment g = 0 ! 6 4 8 // the prices are not sorted in the input
Price of the 2 models of garment g = 1 ! 5 10
Price of the 4 models of garment g = 2 ! 1 5 3 5

For this test case, the answer is 19, which may result from buying the underlined items
(8+10+1). This is not unique, as solutions (6+10+3) and (4+10+5) are also optimal.

25If the intended solution is DP, (a good) problem author will usually set large enough constraints so that
a (heavily optimized) recursive backtracking solution (in a fast programming language like C++) still gets
the TLE verdict.

26But DP can also be the solution for a yes/no decision problem too.
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However, suppose we have this test case B with M = 9 (limited budget), C = 3:
Price of the 3 models of garment g = 0 ! 6 4 8
Price of the 2 models of garment g = 1 ! 5 10
Price of the 4 models of garment g = 2 ! 1 5 3 5

The answer is then “no solution” because even if we buy all the cheapest models for each
garment, the total price (4+5+1) = 10 still exceeds our given budget M = 9.

In order for us to appreciate the usefulness of Dynamic Programming in solving the
above-mentioned problem, let’s explore how far the other approaches discussed earlier will
get us in this particular problem.

Approach 1: Greedy (Wrong Answer)

Since we want to maximize the budget spent (budget b = M initially), one greedy idea (there
are other greedy approaches—which are also WA) is to take the most expensive model for
each garment g which still fits our budget. For example in test case A above, we can choose
the most expensive model 3 of garment g = 0 with price 8 (b is now 20-8 = 12), then choose
the most expensive model 2 of garment g = 1 with price 10 (b = 12-10 = 2), and finally
for the last garment g = 2, we can only choose model 1 with price 1 as the budget b we
have left does not allow us to buy the other models with price 3 or 5. This greedy strategy
‘works’ for test cases A and B above and produces the same optimal solution (8+10+1) =
19 and “no solution”, respectively. It also runs very fast27: 20 + 20 + . . . + 20 operations
in the worst case, i.e., 20 ⇥ 20 = 400, a small number. However, this greedy strategy does
not work for many other test cases, such as this counter-example28 below (test case C):

Test case C with M = 12, C = 3:
3 models of garment g = 0 ! 6 4 8
2 models of garment g = 1 ! 5 10
4 models of garment g = 2 ! 1 5 3 5

The Greedy strategy selects model 3 of garment g = 0 with price 8 (b = 12-8 = 4), causing
us to not have enough budget to buy any model in garment g = 1, thus incorrectly reporting
“no solution”. One optimal solution is 4+5+3 = 12, which uses up all of our budget. The
optimal solution is not unique as 6+5+1 = 12 also depletes the budget.

Approach 2: Divide and Conquer (Wrong Answer)

This problem is not solvable using the Divide and Conquer paradigm. This is because the
sub-problems (explained in the Complete Search sub-section below) are not independent.
Therefore, we cannot solve them separately with the Divide and Conquer approach.

Approach 3: Complete Search (Time Limit Exceeded)

Next, let’s see if Complete Search (recursive backtracking) can solve this problem. One
way to use recursive backtracking in this problem is to write a function dp(g, b) with two
parameters: the current garment g that we are dealing with and the current (remaining)
budget b that we have. This function returns the required answer. The pair (g, b) is the
state of this problem. Note that the order of parameters does not matter, e.g., (b, g) is
also a perfectly valid state. Later in Section 3.5.3, we will see more discussion on how to
select appropriate states for a problem.

27We do not need to sort the prices just to find the model with the maximum price as there are only up
to K  20 models. An O(K) scan is enough. However, if the constraints are bigger, it may be beneficial to
sort the prices in descending order to give us early pruning possibilities.

28To prove that a Greedy algorithm is incorrect, we just need to find one counter-example.
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We start with garment g = 0 (first garment) and b = M (the initial budget). Then, we
try all possible models in garment g = 0 (a maximum of 20 models). If model i is chosen, we
subtract model i’s price from b, then repeat the process in a recursive fashion with garment
g = 1 (which can also have up to 20 models), etc. We stop when the model for the last
garment g = C-1 has been chosen. If remaining budget b < 0 before we choose a model
from garment g = C-1, we can prune the infeasible solution. Among all valid combinations,
we can then pick the one that results in the smallest non-negative b. This maximizes the
budget spent, which is (M-b).

We can formally define these Complete Search recurrences (transitions) as follows:

1. If b < 0 (i.e., the remaining budget goes negative),
dp(g, b) = �1 (in practice, we can just return a large negative value)

2. If a model from the last garment has been bought, that is, g = C,
dp(g, b) = M-b (this is the actual budget that we spent)

3. In general case, 8 model 2 [1..k] of current garment g,
dp(g, b) = max(dp(g+1, b-price[g][model]))
We want to maximize this value (Recall that the invalid ones have large negative value)

This solution works correctly, but it is very slow! Let’s analyze the worst case time com-
plexity. In the largest test case, garment g = 0 has up to 20 models; garment g = 1 also
has up to 20 models and all garments including the last garment g = 19 also have up to 20
models. Therefore, this Complete Search runs in 20⇥ 20⇥ . . .⇥ 20 operations in the worst
case, i.e., 2020 ⇡ 1026, a very large number. If we can only come up with this Complete
Search solution, we cannot solve this problem.

Approach 4: Top-Down DP (Accepted)

To solve this problem, we have to use the DP concept as this problem satisfies the two
prerequisites for DP to be applicable:

1. This problem has optimal sub-structures29.
This is illustrated in the third Complete Search recurrence above: the solution for the
sub-problem is part of the solution of the original problem. In other words, if we select
model i for garment g = 0, for our final selection to be optimal, our choice for garments
g = 1 and above must also be the optimal choice for a reduced budget of M -price,
where price refers to the price of model i.

2. This problem has overlapping sub-problems.
This is the key characteristic of DP! The search space of this problem is not as big as
the rough 2020 bound obtained earlier because many sub-problems are overlapping !

Let’s verify if this problem indeed has overlapping sub-problems. Suppose that there are 2
models in a certain garment g with the same price p. Then, a Complete Search will move
to the same sub-problem dp(g+1, b-p) after picking either model! This situation will also
occur if some combination of b and chosen model’s price causes b1-p1 = b2-p2 at the same
garment g. This will—in a Complete Search solution—cause the same sub-problem to be
computed more than once, an ine�cient state of a↵airs!

So, how many distinct sub-problems (a.k.a. states in DP terminology) are there in this
problem? There are only 20 possible values for the garment g (0 to 19 inclusive) and 201

29Optimal sub-structures are also required for Greedy algorithms to work, but this problem lacks the
‘greedy property’, making it unsolvable with the Greedy algorithm.
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possible values for b (0 to 200 inclusive). Thus there are only 201 ⇥ 20 = 4020 distinct
sub-problems. Each sub-problem just needs to be computed once. If we can ensure this, we
can solve this problem much faster.

The implementation of this DP solution is surprisingly simple. If we already have the re-
cursive backtracking solution (see the recurrences—a.k.a. transitions in DP terminology—
shown in the Complete Search approach above), we can implement the top-down DP by
adding these two additional steps:

1. We add an e�cient data structure to map states to values. For most DP problems,
such data structure is a (multi-dimensional) array that have dimensions corresponding
to the problem states, called the DP memo table. This way, we can use fast O(1) array
indexing to quickly30 map a state to a corresponding cell in the array. We initialize
this memo table with dummy values that are not used in the problem, e.g., -131.

2. At the start of the recursive function, check if this state has been computed before.

(a) If it has, we simply return the value from the DP memo table, O(1) using fast
array indexing. This is the origin of the term ‘memoization’.

(b) If it has not been computed before, perform the computation as per normal (only
once) and then store the computed value in the DP memo table (also in O(1) using
fast array indexing) so that further calls to this sub-problem (state) can return
with the (same) answer immediately.

Analyzing a basic32 DP solution is easy. If it has M distinct states, then it requires O(M)
memory space. If computing one state (the complexity of the DP transition) requires O(k)
steps, then the overall time complexity is O(Mk) as DP guarantees that each state is com-
puted just once. This UVa 11450 problem has M = 20⇥201 = 4020 and k = 20 (as we have
to iterate through at most 20 models for each garment g). Thus, the time complexity is at
most 4020⇥ 20 = 80 400 operations per test case, a very manageable calculation33.

We display our code below for illustration, especially for those who have never coded a
top-down DP algorithm before. Scrutinize this code and verify that it is indeed very similar
to the recursive backtracking code that you have seen in Section 3.2.

// UVa 11450 - Wedding Shopping - Top Down
// this code is similar to recursive backtracking code
// parts of the code specific to top-down DP are commented with: ‘TOP-DOWN’
// if these lines are commented, this top-down DP will become backtracking!

#include <bits/stdc++.h>
using namespace std;

const int MAX_gm = 30; // up to 20 garments at most and 20 models/garment
const int MAX_M = 210; // maximum budget is 200

30Also see Book 2 for alternative data structures that can be used for this purpose.
31For C/C++ users, we can use memset(memo, -1, sizeof memo); in <cstring> to initialize the con-

tent of array memo to all -1, regardless of its dimensions. Note that to avoid unnecessary bug, please use
memset only with special initialization values, like -1 (for typical DP memo table) or 0 (to clear all values).
Read the documentation of memset to learn what this function actually does. For C++ users, note that
we can use vector construction method like vector<int> memo(n, -1); but it is harder to do so for
multidimensional vector.

32Basic means “without fancy optimizations that we will see later in this section and in Book 2”.
33This UVa 11450 is a rather old problem. In modern programming competitions, usually DP problems

will have Mk close to 100M.
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int M, C, price[MAX_gm][MAX_gm]; // g < 20 and k <= 20
int memo[MAX_gm][MAX_M]; // g < 20 and b <= 200

int dp(int g, int b) {
if (b < 0) return -1e9; // fail, return -ve number
if (g == C) return M-b; // we are done
// if the line below is commented, top-down DP will become backtracking!!
if (memo[g][b] != -1) return memo[g][b]; // TOP-DOWN: memoization
int ans = -1; // start with a -ve number
for (int k = 1; k <= price[g][0]; ++k) // try each model k

ans = max(ans, dp(g+1, b-price[g][k]));
return memo[g][b] = ans; // TOP-DOWN: memoize ans

}

int main() { // easy to code
int TC; scanf("%d", &TC);
while (TC--) {

scanf("%d %d", &M, &C);
for (int g = 0; g < C; ++g) {

scanf("%d", &price[g][0]); // store k in price[g][0]
for (int k = 1; k <= price[g][0]; ++k)

scanf("%d", &price[g][k]);
}
memset(memo, -1, sizeof memo); // TOP-DOWN: init memo
if (dp(0, M) < 0) printf("no solution\n"); // start the top-down DP
else printf("%d\n", dp(0, M));

}
return 0;

}

We want to take this opportunity to illustrate another style used in implementing DP solu-
tions (only applicable for C/C++ users). Instead of frequently addressing a certain cell in
the memo table, we can use a local reference (or alias) variable to store the memory address
of the required cell in the memo table as shown below. The two coding styles are not very
di↵erent, and it is up to you to decide which style you prefer.

int dp(int g, b) {
if (b < 0) return -1e9; // must check this first
if (g == C) return M-b; // budget can’t be < 0
int &ans = memo[g][b]; // remember memory address
if (ans != -1) return ans;
for (int k = 1; k <= price[g][0]; ++k) // try each model k

ans = max(ans, dp(g+1, b-price[g][k]));
return ans; // ans == memo[g][b]

}

Source code: ch3/dp/UVa11450 td.cpp|java|py|ml
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Approach 5: Bottom-Up DP (Accepted)

There is another way to implement a DP solution often referred to as the bottom-up DP.
This is actually the ‘true form’ of DP as DP was originally known as the ‘tabular method’
(computation technique involving a table). The basic steps to build a bottom-up DP solution
are as follows:

1. Determine the required set of parameters that uniquely describe the problem (the
state). This step is similar to what we have discussed in recursive backtracking and
top-down DP earlier.

2. If there are N parameters required to represent the states, prepare an N dimensional
array (DP table), with one entry per state. This is equivalent to the memo table in top-
down DP. However, there are di↵erences. In bottom-up DP, we only need to initialize
some cells of the DP table with known initial values (the base cases). Recall that in
top-down DP, we initialize the memo table completely with dummy values (usually -1)
to indicate that we have not yet computed the values.

3. Now, with the base-case cells/states in the DP table already filled, determine the
cells/states that can be filled next (the transitions). Repeat this process until the DP
table is complete. For the bottom-up DP, this part is usually accomplished through
iterations, using loops (more details about this later).

For UVa 11450, we can write the bottom-up DP as follows: We describe the state of a sub-
problem with two parameters: the current garment g and the current budget left b. This
state formulation is the same as the top-down DP above. The values of g are the row indices
of the DP table so that we can take advantage of the cache-friendly row-major traversal in
a 2D array, see the speed-up tips in Section 3.2.3. Then, we initialize a 2D table (Boolean
matrix) reachable[g][b] of size 20 ⇥ 201. Initially, only cells/states reachable by buying
any of the models of the first garment g = 0 are set to true (in the first row). Let’s use
test case A above as an example. In Figure 3.12—top, the only columns in row 0 that are
initially set to true are column 12 (from 20-8), 14 (from 20-6), and 16 (from 20-4).

Figure 3.12: Bottom-Up DP (columns 21 to 200 are not shown for brevity)

Now, we loop from the second garment g = 1 (second row) to the last garment g = C-1 =
3-1 = 2 (third and last row) in row-major order (row by row). If reachable[g-1][b] is
true, then the next state reachable[g][b-p] where p is the price of a model of current gar-
ment g is also reachable as long as the second parameter (i.e., the value of b-p) is not negative.
See Figure 3.12—middle, where reachable[0][16] propagates to reachable[1][16-5] and
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reachable[1][16-10] when the model with price 5 and 10 in garment g = 1 is bought, re-
spectively; reachable[0][12] propagates to reachable[1][12-10] when the model with
price 10 in garment g = 1 is bought, etc. We repeat this table filling process row by row
until we are done with the last row.

Finally, the answer can be found in the last row when g = C-1. Find the state in
that row that is both nearest to index 0 and reachable. In Figure 3.12—bottom, the cell
reachable[2][1] provides the answer. This means that we can reach state (b = 1) by
buying some combination of the various garment models. The required final answer is
actually M-b, or in this case, 20-1 = 19. The answer is “no solution” if there is no state
in the last row that is reachable (where reachable[C-1][b] is set to true). We provide our
implementation below for comparison with the top-down version.

// UVa 11450 - Wedding Shopping - Bottom Up (faster than Top Down)
#include <bits/stdc++.h>
using namespace std;

const int MAX_gm = 30; // <= 20 garments&models
const int MAX_M = 210; // maximum budget is 200

int price[MAX_gm][MAX_gm]; // g < 20 and k <= 20
bool reachable[MAX_gm][MAX_M]; // g < 20 and b <= 200

int main() {
int TC; scanf("%d", &TC);
while (TC--) {

int M, C; scanf("%d %d", &M, &C);
for (int g = 0; g < C; ++g) {

scanf("%d", &price[g][0]); // store k in price[g][0]
for (int k = 1; k <= price[g][0]; ++k)

scanf("%d", &price[g][k]);
}

memset(reachable, false, sizeof reachable); // clear everything
// initial values (base cases), using first garment g = 0
for (int k = 1; k <= price[0][0]; ++k)

if (M-price[0][k] >= 0)
reachable[0][M-price[0][k]] = true;

int b;
for (int g = 1; g < C; ++g) // for each garment

for (b = 0; b < M; ++b) if (reachable[g-1][b])
for (int k = 1; k <= price[g][0]; ++k) if (b-price[g][k] >= 0)

reachable[g][b-price[g][k]] = true; // also reachable now
for (b = 0; b <= M && !reachable[C-1][b]; ++b);

if (b == M+1) printf("no solution\n"); // last row has no on bit
else printf("%d\n", M-b);

}
return 0;

}
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There is an advantage for writing DP solutions in the bottom-up fashion. For problems
where we only need the last row of the DP table (or, more generally, the last updated slice
of all the states) to determine the solution—including this problem, we can optimize the
memory usage of our DP solution by sacrificing one dimension in our DP table. For harder
DP problems34 with tight memory requirements, this ‘space saving technique’ may prove to
be useful, though the overall time complexity does not change.

Let’s take a look again at Figure 3.12. We only need to store two rows, the current row we
are processing and the previous row we have processed. To compute row 1, we only need to
know the columns in row 0 that are set to true in reachable. To compute row 2, we similarly
only need to know the columns in row 1 that are set to true in reachable. In general, to
compute row g, we only need values from the previous row g � 1. So, instead of storing a
boolean matrix reachable[g][b] of size 20⇥201, we can simply store reachable[2][b] of
size 2⇥ 201. We can use this programming technique to reference one row as the ‘previous’
row and another row as the ‘current’ row (e.g., prev = 0, cur = 1) and then swap them
(e.g., now prev = 1, cur = 0) as we compute the bottom-up DP row by row. Note that for
this problem, the memory savings are not significant. For harder DP problems, for example
where there might be thousands of garment models instead of 20, this space saving technique
can be important.

// all else the same as the previous code
bool reachable[2][MAX_M]; // ONLY TWO ROWS

// inside int main()
// then we modify the main loop in int main a bit
int cur = 1; // we start with this row
for (int g = 1; g < C; ++g) { // for each garment

memset(reachable[cur], false, sizeof reachable[cur]); // reset row
for (b = 0; b < M; ++b) if (reachable[!cur][b])

for (int k = 1; k <= price[g][0]; ++k) if (b-price[g][k] >= 0)
reachable[cur][b-price[g][k]] = true;

cur = 1-cur; // flip the two rows
}

for (b = 0; b <= M && !reachable[!cur][b]; ++b);

Source code: ch3/dp/UVa11450 bu.cpp|java|py|ml

Top-Down versus Bottom-Up DP

Although both styles use ‘tables’, the way the bottom-up DP table is filled is di↵erent from
that of the top-down DP memo table. In the top-down DP, the memo table entries are
filled ‘as needed’ through the recursion itself. In the bottom-up DP, we use a correct ‘DP
table filling order’ to compute the values such that the previous values needed to process
the current cell have already been obtained. This table filling order is the topological order
of the implicit DAG (this will be explained in more detail in Section 4.6.1) in the recurrence
structure. For most DP problems, a topological order can be achieved simply with the proper
sequencing of some (nested) loops.

For most DP problems, these two styles are equally good and the decision to use a
particular DP style is a matter of preference. However, for harder DP problems, one of the

34Not this introductory UVa 11450 DP problem.
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styles can be better than the other. To help you understand which style that you should
use when presented with a DP problem, please study the trade-o↵s between top-down and
bottom-up DPs listed in Table 3.2.

Top-Down Bottom-Up
Pros: Pros:
1. It is a natural transformation from the
normal Complete Search recursion

1. Faster if many sub-problems are revisited
as there is no overhead from recursive calls

2. Computes the sub-problems only when
necessary (sometimes this is faster)

2. Can save memory space with the ‘space
saving’ technique

Cons: Cons:
1. Slower if many sub-problems are revis-
ited due to function call overhead (this is not
usually penalized in programming contests)

1. For programmers who are inclined to re-
cursion, this style may not be intuitive

2. If there are M states, an O(M) table size
is required, which can lead to MLE for some
harder problems (except if we use alternative
data structures shown in Book 2)

2. If there are M states, bottom-up DP
visits and fills the value of all theseM states
even if many of the states are not necessary

Table 3.2: DP Decision Table

Displaying the Optimal Solution

Many DP problems request only for the value of the optimal solution (like the UVa 11450
above). However, many contestants are caught o↵-guard when they are also required to print
the optimal solution. We are aware of two ways to do this.

The first way is mainly used in the bottom-up DP approach (which is still applicable to
top-down DPs) where we store the predecessor information at each state. If there is more
than one optimal predecessor and we have to output all optimal solutions, we can store those
predecessors in a list. Once we have the optimal final state, we can do backtracking from
the optimal final state and follow the optimal transition(s) recorded at each state until we
reach one of the base cases. If the problem asks for all optimal solutions, this backtracking
routine will print them all. However, most problem authors usually set additional output
criteria so that the selected optimal solution is unique (for easier judging).

Example: See Figure 3.12—bottom. The optimal final state is reachable[2][1]. The
predecessor of this optimal final state is state reachable[1][2]. We now backtrack to
reachable[1][2]. Next, see Figure 3.12—middle. The predecessor of state reachable[1][2]
is state reachable[0][12]. We then backtrack to reachable[0][12]. As this is already
one of the initial base states (at the first row), we know that an optimal solution is: (20!12)
= price 8, then (12!2) = price 10, then (2!1) = price 1. However, as mentioned earlier
in the problem description, this problem may have several other optimal solutions, e.g., We
can also follow the path: reachable[2][1] ! reachable[1][6] ! reachable[0][16]
which represents another optimal solution: (20!16) = price 4, then (16!6) = price 10,
then (6!1) = price 5.

The second way is applicable mainly to the top-down DP approach where we utilize the
strength of recursion and memoization to do the same job. Using the top-down DP code
shown in Approach 4 above, we will add another function void print dp(int g, int b)
that has the same structure as int dp(int g, int b) except that it uses the values stored
in the memo table to reconstruct the solution. A sample implementation (that only prints
out one optimal solution) is as follows:
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void print_dp(int g, b) { // void function
if ((g == C) || (b < 0)) return; // similar base cases
for (int k = 1; k <= price[g][0]; ++k) // which model k is opt?

if (dp(g+1, b-price[g][k]) == memo[g][b]) { // this one
printf("%d - ", price[g][k]);
print_dp(g+1, b-price[g][k]); // recurse to this only
break;

}
}

Exercise 3.5.1.1: To verify your understanding of UVa 11450 problem discussed in this
section, determine what is the output for test case D below?

Test case D with M = 25, C = 3:
Price of the 3 models of garment g = 0 ! 6 4 8
Price of the 2 models of garment g = 1 ! 10 6
Price of the 4 models of garment g = 2 ! 7 3 1 5

Exercise 3.5.1.2: Is the following state formulation dp(g, model), where g is the current
garment and model is the current model, appropriate and exhaustive for UVa 11450 problem?

Exercise 3.5.1.3: Python users have another tool in their disposal for Top-Down DP
implementation. Study @lru cache function from functools!

Exercise 3.5.1.4*: Modify the given print dp code so that it prints all optimal solutions
of this UVa 11450!

3.5.2 Classical Examples

The problem UVa 11450 - Wedding Shopping above is a (relatively easy) non classical DP
problem, where we had to come up with the correct DP states and transitions by ourself.
However, there are many other classical problems with e�cient DP solutions, i.e., their
DP states and transitions are well-known. Therefore, such classical DP problems and their
solutions should be mastered by every contestant who wishes to do well in IOI or ICPC! In
this section, we list down six classical DP problems and their solutions. Note: Once you
understand the basic form of these DP solutions, try solving the programming exercises that
enumerate their variants.

a1. Max 1D Range Sum

Abridged problem statement of UVa 00507 - Jill Rides Again: Given an integer array A
containing n  20K non-zero integers, determine the maximum (1D) range sum of A. In
other words, find the maximum Range Sum Query (RSQ) between two indices i and j in
[0..n-1], that is: A[i] + A[i+1] + +...+ A[j] (also see Section 2.4.3 and 2.4.4).

O(n3) Algorithm

A Complete Search algorithm that tries all possible O(n2) pairs of i and j, computes the
required RSQ(i, j) in O(n), and finally picks the maximum one runs in an overall time
complexity of O(n3). With n up to 20K, this is a TLE algorithm.

173



3.5. DYNAMIC PROGRAMMING c� Steven, Felix, Suhendry

O(n2) Algorithm

In Section 2.4.3, we have discussed the following DP strategy: pre-process array A by comput-
ing prefix sums A[i] += A[i-1] 8i 2 [1..n-1] so that A[i] contains the sum of integers
in subarray A[0..i]. We can now compute RSQ(i, j) in O(1): RSQ(0, j) = A[j] and
RSQ(i, j) = A[j] - A[i-1] 8i > 0 using inclusion-exclusion principle. With this35, the
Complete Search algorithm above can be made to run in O(n2). For n up to 20K, this is
still a TLE algorithm.

O(n) Algorithm

There is an even better algorithm for this problem. The main part of Jay Kadane’s O(n)
(can be viewed as a greedy or DP) algorithm to solve this problem is shown below.

// inside int main()
int n = 9, A[] = { 4,-5, 4,-3, 4, 4,-4, 4,-5 };// a sample array A
int sum = 0, ans = 0;
for (int i = 0; i < n; ++i) { // linear scan, O(n)

sum += A[i]; // greedily extend this
ans = max(ans, sum); // keep the cur max RSQ
if (sum < 0) sum = 0; // reset the running sum

} // if it ever dips below 0
printf("Max 1D Range Sum = %d\n", ans); // should be 9

Source code: ch3/dp/Max1DRangeSum.cpp|java|py|ml

The key idea of Kadane’s algorithm is to keep a running sum of the integers seen so far and
greedily reset that to 0 if the running sum dips below 0. This is because re-starting from
0 is always better than continuing from a negative running sum. Kadane’s algorithm is the
required algorithm to solve this UVa 00507 problem as n  20K.

Note that we can also view this Kadane’s algorithm as a DP solution. At each step,
we have two choices: we can either leverage the previously accumulated maximum sum, or
begin a new range. The DP variable dp(i) thus represents the maximum sum of a range of
integers that ends with element A[i]. Thus, the final answer is the maximum over all the
values of dp(i) where i 2 [0..n-1]. If zero-length ranges are allowed, then 0 must also be
considered as a possible answer. The implementation above is essentially an e�cient version
that utilizes the space saving technique discussed earlier.

a2. Max 2D Range Sum

Abridged problem statement of UVa 00108 - Maximum Sum: Given an n⇥n (1  n  100)
square matrix of integers A where each integer ranges from [-127..127], find a sub-matrix
of A with the maximum sum. For example: The 4⇥ 4 matrix (n = 4) in Table 3.3.A below
has a 3⇥ 2 sub-matrix on the lower-left with sum of 9 + 2 - 4 + 1 - 1 + 8 = 15 and this is
the maximum possible sum.

O(n6) Algorithm

Attacking this problem näıvely using a Complete Search as shown below does not work as
it runs in O(n6). For the largest test case with n = 100, an O(n6) algorithm is too slow.

35However, if we use data structure for dynamic RSQ like Fenwick Tree or Segment Tree discussed in
Section 2.4, we will end up with O(n2 log n) time complexity.
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Table 3.3: UVa 00108 - Maximum Sum

int maxSubRect = -127*100*100; // the lowest possible val
for (int i = 0; i < n; ++i)

for (int j = 0; j < n; ++j) // start coordinate
for (int k = i; k < n; ++k)

for (int l = j; l < n; ++l) { // end coord
int subRect = 0; // sum this sub-rectangle
for (int a = i; a <= k; ++a)

for (int b = j; b <= l; ++b)
subRect += A[a][b];

maxSubRect = max(maxSubRect, subRect); // the answer is here
}

O(n4) Algorithm

The solution for the Max 1D Range Sum in the previous subsection can be extended to two
(or more) dimensions as long as the inclusion-exclusion principle is properly applied. The
only di↵erence is that while we dealt with overlapping sub-ranges in Max 1D Range Sum,
we will deal with overlapping sub-matrices in Max 2D Range Sum. We can turn the n⇥ n
input matrix into an n ⇥ n cumulative sum matrix where A[i][j] no longer contains its
own value, but the sum of all items within sub-matrix (0, 0) to (i, j). This can be done
simultaneously while reading the input and still runs in O(n2). The code shown below turns
the input square matrix (Table 3.3—A) into a cumulative sum matrix (Table 3.3—B).

int n; scanf("%d", &n); // square matrix size
for (int i = 0; i < n; ++i)

for (int j = 0; j < n; ++j) {
scanf("%d", &A[i][j]);
if (i > 0) A[i][j] += A[i-1][j]; // add from top
if (j > 0) A[i][j] += A[i][j-1]; // add from left
if (i > 0 && j > 0) A[i][j] -= A[i-1][j-1];// avoid double count

} // inclusion-exclusion
int maxSubRect = -127*100*100; // the lowest possible val
for (int i = 0; i < n; ++i)

for (int j = 0; j < n; ++j) // start coordinate
for (int k = i; k < n; ++k)

for (int l = j; l < n; ++l) { // end coord
int subRect = A[k][l]; // from (0, 0) to (k, l)
if (i > 0) subRect -= A[i-1][l]; // O(1)
if (j > 0) subRect -= A[k][j-1]; // O(1)
if (i > 0 && j > 0) subRect += A[i-1][j-1]; // O(1)
maxSubRect = max(maxSubRect, subRect); // the answer is here

}
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For example, let’s compute the sum of (1, 2) to (3, 3). We split the sum into 4 parts and
compute A[3][3] - A[0][3] - A[3][1] + A[0][1] = -3 - 13 - (-9) + (-2) = -9 as
highlighted in Table 3.3—C. With this O(1) DP formulation, the Max 2D Range Sum prob-
lem can be solved in O(n4). For the largest test case of UVa 00108 with n = 100, this is
AC.

O(n3) Algorithm

There exists an O(n3) solution that combines the DP solution for the Max Range 1D Sum
problem on one dimension and uses the same idea as proposed by Kadane on the other
dimension to solve cases up to n  450. The implementation is shown below:

// inside int main()
int n; scanf("%d", &n); // square matrix size
for (int i = 0; i < n; ++i)

for (int j = 0; j < n; ++j) {
scanf("%d", &A[i][j]);
if (j > 0) A[i][j] += A[i][j-1]; // pre-processing

}
int maxSubRect = -127*100*100; // lowest possible val
for (int l = 0; l < n; ++l)

for (int r = l; r < n; ++r) {
int subRect = 0;
for (int row = 0; row < n; ++row) {

// Max 1D Range Sum on columns of this row
if (l > 0) subRect += A[row][r] - A[row][l-1];
else subRect += A[row][r];
// Kadane’s algorithm on rows
if (subRect < 0) subRect = 0; // restart if negative
maxSubRect = max(maxSubRect, subRect);

}
}

Source code: ch3/dp/UVa00108.cpp|java|py|ml

From these two examples—the Max 1D/2D Range Sum Problems—we can see that not
every range problem requires a Fenwick/Segment Tree as discussed in Section 2.4.3/2.4.4,
respectively. Static-input range-related problems are often solvable with DP techniques. It
is also worth mentioning that the solution for a range problem is very natural to produce
with bottom-up DP techniques as the operand is already a 1D or a 2D array. We can still
write the recursive top-down solution for a range problem, but that is not as natural.

b. Longest Increasing Subsequence (LIS)

Problem: Given a sequence {A[0], A[1],..., A[n-1]}, determine its Longest Increasing
Subsequence (LIS)36. Note that these ‘subsequences’ are not necessarily contiguous. Exam-
ple: n = 8, A = {�7, 10, 9, 2, 3, 8a, 8b, 1}. The length-4 LIS is {-7, 2, 3, 8a} (it can also end
with the second copy of 8, i.e., 8b).

36There are other variants of this problem, e.g., the Longest Decreasing Subsequence and Longest Non
Increasing/Decreasing Subsequence. The increasing subsequences can be modeled as a Directed Acyclic
Graph (DAG) and finding the LIS is equivalent to finding the Longest Paths in the DAG (see Section 4.6.1).
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Figure 3.13: Longest Increasing Subsequence

O(2n) Complete Search Algorithm

If you re-read the overview and motivation of this chapter (see Section 3.1), you will find a
näıve Complete Search that simply enumerates all possible subsequences of a sequence with
n items in order to find the longest increasing one. This is clearly too slow as there are O(2n)
possible subsequences.

O(n2) DP Algorithm

Instead of trying all possible subsequences, we can consider the problem with a di↵erent
approach. We can write the state of this problem with just one parameter: i. Let LIS(i)
be the LIS ending at index i. We know that LIS(0) = 1 as the first number in A is itself a
subsequence. For i � 1, LIS(i) is slightly more complex. We need to find the index j such
that j < i and A[j] < A[i] and LIS(j) is the largest. Once we have found this index j,
we know that LIS(i) = LIS(j)+1. We can write this recurrence as follows:

int memo[MAX_N]; // MAX_N up to 10^4

int LIS(int i) { // O(n^2) overall
if (i == 0) return 1; // can’t extend anymore
int &ans = memo[i];
if (ans != -1) return ans; // was computed before
ans = 1; // at least i itself
for (int j = 0; j < i; ++j) // O(n) here

if (A[j] < A[i]) // increasing condition
ans = max(ans, LIS(j)+1); // pick the max

return ans;
}

// in int main()
memset(memo, -1, sizeof memo);
printf("LIS length is %d\n\n", LIS(n-1)); // with O(n^2) DP

The answer is the largest value of LIS(k), 8k 2 [0..n-1]. However, if we use a sentinel
value A[n] = Inf, then every A[j] 8j 2 [0..n-1] will extend by one more unit to reach
A[n]. Thus the answer is LIS(n)-1.

There are clearly many overlapping sub-problems in LIS problem because to compute
LIS(i), we need to compute LIS(j) 8j 2 [0..i-1]. However, there are only n distinct
states, the indices of the LIS ending at index i, 8i 2 [0..n-1]. As we need to compute
each state with an O(n) loop, this DP algorithm runs in O(n2).

If needed, the LIS solution(s) can be reconstructed by storing the predecessor information
(the arrows in Figure 3.13) and tracing the arrows from index k that contain the highest
value of LIS(k). For example, LIS(5) is the optimal final state. In Figure 3.13, we can
trace the arrows as follows: LIS(5) ! LIS(4) ! LIS(3) ! LIS(0), so the optimal solution
(read backwards) is index {0, 3, 4, 5} or {-7, 2, 3, 8a}.
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O(n log k) Greedy + Divide and Conquer Algorithm

As of year 2020, recent LIS problem is unlikely to be solvable using O(n2) DP algorithm
presented earlier. Instead, we need to use the following non-DP solution: output-sensitive
O(n log k) Greedy + D&C algorithm37 (where k is the length of the LIS) by maintaining an
array that is always sorted and therefore amenable to binary search.

Let vi L and vi L id be resizeable array such that L[i]/L id[i] represents the smallest
ending value/its index of all length-i increasing subsequences found so far, respectively. The
size of L is k and never decreases. Though this definition is slightly complicated, it is easy
to see that it is always ordered—L[i-1] will always be smaller than L[i] as the second-last
element of any LIS (of length-i) is smaller than its last element by definition. As such, for
every next element A[i], we can binary search array L in O(log k) to determine the lower
bound pos, the position where we can either greedily lower the content of L[pos] to a lower
number to facilitate potentially longer increasing subsequence in the future, or to extend the
LIS by +1 if pos == k.

Note that the content of L is not the actual LIS. To facilitate reconstruction of the actual
LIS (if asked38), we need to also remember the predecessor/parent array vi p (see Section
2.4.1) that is updated every time we process A[i]. The code is shown below (it will be much
shorter if the solution reconstruction path is removed).

vi p; // predecessor array

void print_LIS(int i) { // backtracking routine
if (p[i] == -1) { printf("%d", A[i]); return; }// base case
print_LIS(p[i]); // backtrack
printf(" %d", A[i]);

}

// inside int main()
int k = 0, lis_end = 0;
vi L(n, 0), L_id(n, 0);
p.assign(n, -1);

for (int i = 0; i < n; ++i) { // O(n log k)
int pos = lower_bound(L.begin(), L.begin()+k, A[i]) - L.begin();
L[pos] = A[i]; // greedily overwrite this
L_id[pos] = i; // remember the index too
p[i] = pos ? L_id[pos-1] : -1; // predecessor info
if (pos == k) { // can extend LIS?

k = pos+1; // k = longer LIS by +1
lis_end = i; // keep best ending i

}
}

printf("Final LIS is of length %d: ", k);
print_LIS(lis_end); printf("\n");

Source code: ch3/dp/LIS.cpp|java|py|ml

37We classify this O(n log k) LIS algorithm (“patience sorting”) under DP category due to legacy reason.
38The code can be much simpler if this is not asked.
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This O(n log k) algorithm is probably less intuitive than the O(n2) algorithm. Therefore,
we elaborate the step by step process below using the following test case Example: n = 11,
A = {�7, 10, 9, 2a, 3a, 8a, 8b, 1, 2b, 3b, 4} (the su�x a/b are added for clarity):

• Initially, at A[0] = -7, we have L = {-7}.

• We can insert A[1] = 10 at L[1] so that we have a length-2 LIS, L = {-7, 10}.

• For A[2] = 9, we replace L[1] so that we have a ‘better’ length-2 LIS ending:
L = {-7, 9}.
This is a greedy strategy. By storing the LIS with smaller ending value,
we maximize our ability to further extend the LIS with future values.

• For A[3] = 2a, we replace L[1] to get an ‘even better’ length-2 LIS ending:
L = {-7, 2a}.

• We insert A[4] = 3a at L[2] so that we have a longer LIS, L = {-7, 2a, 3a}.

• We insert A[5] = 8a at L[3] so that we have a longer LIS, L = {-7, 2a, 3a, 8a}.

• For A[6] = 8b, nothing changes as L[3] = 8a (same value).
L = {-7, 2a, 3a, 8a} remains unchanged.

• For A[7] = 1, we improve L[1] so that L = {-7, 1, 3a, 8a}.
This illustrates how the array L is not the LIS of A. If we maintain L id and P, we can
reconstruct the LIS back at the end. Previously, only A[3] = 2a points back to A[0]
= -7. Now, A[7] = 1 also points back to A[0] = -7.
This step is important as there can be longer subsequences in the future that may
extend the length-2 subsequence at L[1] = 1, which we will see soon.

• For A[8] = 2b, we improve L[2] so that L = {-7, 1, 2b, 8a}.

• For A[9] = 3b, we improve L[3] so that L = {-7, 1, 2b, 3b}.

• We insert A[10] = 4 at L[4] so that we have a longer LIS, L = {-7, 1, 2b, 3b, 4}.
The answer is the final (longest) length of the sorted array L at the end of the process
(which is 5 for this example) and can be reconstructed using print LIS(lis end)
routine (which is �7 ! 1 ! 2b ! 3b ! 4 for this example).

c. 0-1 Knapsack (Subset-Sum)

Problem39: Given n items, each with its own value Vi and weight Wi, 8i 2 [0..n-1], and a
maximum knapsack size S, compute the maximum value of the items that we can carry, if we
can either40 ignore or take a particular item (hence the term 0-1 for ignore/take). Assume
that 1  n  1000; 1  S  10 000.

Example: n = 4, V = {100, 70, 50, 10}, W = {10, 4, 6, 12}, S = 12.
If we select item 0 with weight 10 and value 100, we cannot take any other item. Not optimal.
If we select item 3 with weight 12 and value 10, we cannot take any other item. Not optimal.
If we select items 1 and 2, we have total weight 10 and total value 120. This is the maximum.

39This is also known as the NP-complete Subset-Sum problem with a similar problem description: Given
a set of integers and an integer S, is there a (non-empty) subset that has a sum equal to S?

40There are other variants of this problem, e.g., the Fractional Knapsack problem with Greedy solution.
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O(nS) Algorithm

We can simply use the classic DP function dp(id, remW) where id is the index of the current
item to be considered (from id = 0 until N -1) and remW is the remaining weight left in the
knapsack (from remW = initial knapsack size S down to 0)

int dp(int id, int remW) {
if ((id == N) || (remW == 0)) return 0; // two base cases
int &ans = memo[id][remW];
if (ans != -1) return ans; // computed before
if (W[id] > remW) return ans = dp(id+1, remW); // no choice, skip
return ans = max(dp(id+1, remW), // has choice, skip

V[id]+dp(id+1, remW-W[id])); // or take
}

The answer can be found by calling dp(0, S). Note the overlapping sub-problems in this
0-1 Knapsack problem. Example: After taking item 0 and ignoring items 1 and 2, we arrive
at state (3, 2)—at the third item (id = 3) with two units of weight left (remW = 2). After
ignoring item 0 and taking items 1 and 2, we also arrive at the same state (3, 2). We will
show a visualization of this 0-1 Knapsack DP recursion DAG in Section 4.6.3. Although
there are overlapping sub-problems, there are only O(nS) possible distinct states (as id can
vary between [0..n-1] and remW can vary between [0..S])! We can compute each of these
states in O(1), thus the overall time complexity41 of this DP solution is O(nS).

Note: The top-down version of this DP solution is often faster than the bottom-up
version. This is because not all states are actually visited, and hence the critical DP states
involved are actually only a (very small) subset of the entire state space. Remember that
the top-down DP only visits the required states whereas the bottom-up DP visits all distinct
states. Both versions are provided in our source code library.

Source code: ch3/dp/UVa10130.cpp|java|py|ml

d. Coin-Change (CC) - The General Version

Problem: Given a target amount V cents and a list of denominations for n coins, i.e., we
have coinValue[i] (in cents, positive integers) for coin types i 2 [0..n-1], what is the
minimum number of coins that we must use to represent V ? Assume that we have unlimited
supply of coins of any type and 1  n  1000; 1  V  10 000 (also see Section 3.4.1).

Example 1: V = 10, n = 2, coinValue = {1, 5}; We can use:
A. Ten 1 cent coins = 10 ⇥ 1 = 10; Total coins used = 10
B. One 5 cents coin + Five 1 cent coins = 1 ⇥ 5 + 5 ⇥ 1 = 10; Total coins used = 6
C. Two 5 cents coins = 2 ⇥ 5 = 10; Total coins used = 2 ! Optimal

We can use the Greedy algorithm if the coin denominations are suitable (see Section 3.4.1).
Example 1 above is solvable with the Greedy algorithm. However, for general cases, we have
to use DP. See Example 2 below:

Example 2: V = 7, n = 4, coinValue = {1, 3, 4, 5}
The Greedy approach will produce 3 coins as its result as 5+1+1 = 7, but the optimal
solution is actually 2 coins (from 4+3)!

41If S is large such that nS > 1M , this DP solution is not feasible, even with the space saving technique!
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O(nV ) Algorithm

Solution: Use these Complete Search recurrence relations for change(value), where value
is the remaining amount of cents that we need to represent in coins:

1. change(0) = 0 // we need 0 coins to produce 0 cents
2. change(< 0) = 1 // in practice, we can return a large positive value
3. change(value) = min(1 + change(value-coinValue[i])) 8i 2 [0..n-1]

The answer can be found in the return value of change(V).

Figure 3.14: Coin Change

Figure 3.14 (and the recursion DAG of this DP Coin-Change in Section 4.6.3) shows that:
change(0) = 0 and change(< 0) = 1: These are the base cases.
change(1) = 1, from 1 + change(1-1), as 1 + change(1-5) is infeasible (returns 1).
change(2) = 2, from 1 + change(2-1), as 1 + change(2-5) is also infeasible (returns1).
... same thing for change(3) and change(4).
change(5) = 1, from 1 + change(5-5) = 1 coin, smaller than 1 + change(5-1) = 5 coins.
... and so on until change(10).
The answer is in change(V), which is change(10) = 2 in this example.

We can see that there are a lot of overlapping sub-problems in this Coin Change problem
(e.g., both change(10) and change(6) require the value of change(5)). However, there are
only O(V ) possible distinct states (as value can vary between [0..V])! As we need to try
n types of coins per state, the overall time complexity42 of this DP solution is O(nV ).

O(nV ) Algorithm for the Counting Variant

A variant of this problem is to count the number of possible (canonical) ways to get value V
cents using a list of denominations of n coins. For Example 1 above, the answer is 3 ways:
{A: 1+1+1+1+1 + 1+1+1+1+1, B: 5 + 1+1+1+1+1, C: 5+5}.

Solution: Use this classic DP function: dp(type, value), where value is the same as
above but we now have one more parameter type for the index of the coin type that we are
currently considering. This parameter type is important as this solution considers the coin
types sequentially. Once we choose to ignore a certain coin type, we should not consider it
again to avoid double-counting:

int dp(int type, int value) {
if (value == 0) return 1; // one way, use nothing
if ((value < 0) || (type == N)) return 0; // invalid or done
int &ans = memo[type][value];
if (ans != -1) return ans; // was computed before
return ans = dp(type+1, value) + // ignore this type

dp(type, value-coinValue[type]); // one more of this type
}

42If V is large such that nV > 1M , this DP solution is not feasible even with the space saving technique!
Later in Book 2, we will learn that the time complexities of O(nS) for 0-1 Knapsack DP and O(nV ) for
Coin Change DP are called ‘pseudo-polynomial’.
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There are only O(nV ) possible distinct states. Since each state can be computed in O(1),
the overall time complexity43 of this DP solution is O(nV ). The answer can be found by
calling ways(0, V). Note: If the coin values are not changed and you are given many queries
with di↵erent V, then we can choose not to reset the memo table. Therefore, we run this
O(nV ) algorithm once and just perform an O(1) lookup for subsequent queries.

Source code (this coin change variant): ch3/dp/UVa00674.cpp|java|py|ml

e. Traveling-Salesman-Problem (TSP)

Problem: Given n cities (1  n  19) and their pairwise distances in the form of a symmetric
matrix dist of size n ⇥ n, compute the minimum cost of making a tour44 that starts from
any city s, goes through all the other n � 1 cities exactly once, and finally returns to the
starting city s.

Example: The graph shown in Figure 3.15 has n = 4 cities. Therefore, we have up to 4! =
24 possible tours (permutations of 4 cities). One of the minimum tours is A-B-C-D-A with a
cost of 20+30+12+35 = 97 (notice that there can be more than one optimal solution, e.g.,
the other n-1 other symmetrical cycles: B-C-D-A-B, C-D-A-B-C, and D-A-B-C-D). Therefore
a common technique to solve the TSP problem is to fix one vertex, usually vertex A/0 and
only consider the permutations of the other n-1 vertices.

Figure 3.15: A Complete Weighted Graph K4

O(n!) Complete Search Algorithm

A ‘brute force’ TSP solution (either iterative or recursive) that tries all O((n� 1)!) possible
tours (fixing the first city to vertex A in order to take advantage of symmetry) is only
e↵ective when n is at most 12 as 11! ⇡ 40M . When n > 12, this brute force solution will get
TLE in programming contests. However, if there are multiple test cases, the limit for this
‘brute force’ TSP solution is probably just n = 11.

O(2n�1 ⇥ n2) DP Algorithm

We can utilize DP for TSP since the computation of sub-tours is clearly overlapping, e.g., the
tour A�B�C�best sequence of (n�3) other cities that finally returns to A clearly overlaps
the tour A�C �B�the same best sequence of (n� 3) other cities that also returns to A. If
we can avoid re-computing the lengths of such sub-tours, we can save a lot of computation
time. However, a distinct state in TSP depends on two parameters: the last city/vertex
visited c and something that we may have not seen before—a set of visited cities.

There are many ways to represent a set. However, since we are going to pass this set
information around as a parameter of a recursive function (if using top-down DP), the repre-
sentation that we use must be lightweight and e�cient! In Section 2.2, we have presented a

43If V is large such that nV > 1M , this DP solution is not feasible even with the space saving technique!
44Such a tour is called a Hamiltonian tour, which is a cycle in an undirected graph which visits each vertex

exactly once and also returns to the starting vertex. Later in Book 2, we will learn that TSP is an NP-hard
optimization problem.
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viable option: the bitmask. If we have n-1 cities (ignoring the fixed starting city A/vertex 0),
we use a binary integer of length n-1 (saving one bit here is beneficial). If bit i is ‘0’ (o↵)/‘1’
(on), we say that item (city) i + 1 has been visited/has not been visited, respectively. For
example: mask= 1810 = 100102 implies that items (cities) {2, 5} have not been visited45

yet. We will use fast bit manipulation techniques like LSOne(S) to quickly identify which ‘1’
bit(s) are still available46.

The C++ code of this classic DP function dp(u, mask) is shown below. Parameter u is
the current vertex. The ‘1’/on bits in mask describes available vertices.

// what is the minimum cost if we are at vertex u and have visited vertices
// that are described by the off (0 bit) in mask?
int dp(int u, int mask) { // mask = free coordinates

if (mask == 0) return dist[u][0]; // close the tour
int &ans = memo[u][mask];
if (ans != -1) return ans; // computed before
ans = 2000000000;
int m = mask;
while (m) { // up to O(n)

int two_pow_v = LSOne(m); // but this is fast
int v = __builtin_ctz(two_pow_v)+1; // offset v by +1
ans = min(ans, dist[u][v] + dp(v, mask^two_pow_v)); // keep the min
m -= two_pow_v;

}
return ans;

}

There are only O(2n�1 ⇥ n) distinct states because there are n cities and we remember up
to 2n�1 other cities that have been visited in each tour (we assume that the starting city 0
is always visited). Each state can be computed in O(k) if we use LSOne(mask) technique
although the worst case is O(n), thus the overall time complexity of this DP solution is
O(2n�1 ⇥ n2). This allows us to solve up to47 n ⇡ [18..19] as 192 ⇥ 218 ⇡ 94M . This is not
a huge improvement over the brute force solution but if the programming contest problem
involving TSP has input size 11  n  19, then DP is the solution, not brute force. The
answer can be found by calling dp(0, (1<<(n-1))-1): We start from city 0 and assume
the other n-1 cities are still available/have not been visited (city 0 is always visited since the
start). This DP solution for TSP is called the Held-Karp DP algorithm [25].

Source code: ch3/dp/beepers UVa10496.cpp|java|py|ml

Usually, DP TSP problems in programming contests require some kind of graph prepro-
cessing to generate the distance matrix dist before running the DP solution. These variants
are discussed in the section about problem decomposition in Book 2.

45Remember that in mask, indices start from 0 and are counted from the right and we need to o↵set the
index by +1 as we have assumed that city A/vertex 0 has been visited.

46It is beneficial to set ‘1’ to be ‘not yet visited/available’ and ‘0’ to be ‘visited/unavailable’ in this case
to take advantage of the fast LSOne(S) operation.

47As programming contest problems usually require exact solutions, the DP-TSP solution presented here
is already one of the best solutions. In real life, the TSP often needs to be solved for instances with thousands
of cities. To solve larger problems like that, we have non-exact approaches like the ones presented in [23].
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DP solutions that involve a (small) set of Booleans as one of the parameters are more
well known as the DP with bitmask technique. More challenging DP problems involving this
technique are discussed in the section about more advanced DP in Book 2.

We have added a tool for learning DP in VisuAlgo recursion visualization. This time, if
the recursive function goes to the same state more than once (overlapping sub-problems),
VisuAlgo will highlight that vertex. Moreover, we can also redraw the Recursion Tree with
such overlapping sub-problems as a Recursion DAG. We can re-draw Figure 3.2 (recursion
tree of DP-TSP recurrence) as a recursion DAG by not repeating vertex (state) that has been
computed before, but instead we draw more than one incoming edges for such overlapping
states (see Figure 4.42). This is best explained live, so please visit:

Visualization: https://visualgo.net/en/recursion

Exercise 3.5.2.1: The solution for the Range Minimum Query: RMQ(i, j) on 1D arrays in
Section 2.4.4 uses Segment Tree. This is overkill if the given array is static and unchanged
throughout all the queries. Use a DP technique to answer RMQ(i, j) in O(n log n) pre-
processing and O(1) per query.

Exercise 3.5.2.2: Can we use an iterative Complete Search that tries all possible subsets
of n items in Section 3.2.1 to solve the 0-1 Knapsack problem? Why?

Exercise 3.5.2.3*: Given a sequence A of N integers (N  200K), find the the minimum
number of subsets of increasing sequences of A. For example, if A = {5, 1, 3, 7, 4, 9, 6, 8, 2},
the answer is 3 subsets of increasing sequences, e.g., {{5, 7, 9}, {1, 3, 4, 6, 8}, {2}}. Design an
e�cient algorithm to solve this. Hint: Study Dilworth’s Theorem.

Exercise 3.5.2.3*: What is/are the additional change(s) compared to the code shown here
so that the DP TSP solution can handle n = 20 (1 test case) in 1s?

3.5.3 Non-Classical Examples

Although DP is a very popular problem type with high frequency of appearance in recent
programming contests, the classical DP problems in their pure forms usually never appear
in modern IOIs or ICPCs anymore. We study them to understand DP, but we have to
learn to solve many other non-classical DP problems (which may become classic in the near
future) and develop our ‘DP skills’ in the process. In this subsection, we discuss two more
non-classical examples, adding to the UVa 11450 - Wedding Shopping problem that we have
discussed in detail earlier. We have also selected some easier non-classical DP problems as
programming exercises. Once you have cleared most of these problems, you are welcome to
explore the more challenging ones in the other sections in this book, e.g., Section 4.6.1 and
various DP-related sections later.

1. UVa 10943 - How do you add?

Abridged problem description: Given an integer n, how many ways can K non-negative
integers less than or equal to n add up to n? Constraints: 1  n,K  100. Example: For
n = 20 and K = 2, there are 21 ways: 0 + 20, 1 + 19, 2 + 18, 3 + 17, . . . , 20 + 0.

Mathematically, the number of ways can be expressed as (n+k�1)C(k�1) (see Binomial
Coe�cients which also requires DP in Book 2). We will use this simple problem to re-
illustrate Dynamic Programming principles that we have discussed in this section, especially
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the process of deriving appropriate states for a problem and deriving correct transitions from
one state to another given the base case(s).

First, we have to determine the parameters of this problem that can represent distinct
states of this problem. There are only two parameters in this problem, n and K. Therefore,
there are only 4 possible combinations:

1. If we do not choose any of them, we cannot represent a state. This option is ignored.

2. If we choose only n, then we do not know how many numbers  n have been used.

3. If we choose only K, then we do not know the target sum n.

4. Therefore, the state of this problem should be represented by a pair (or tuple) (n,K).
The order of chosen parameter(s) does not matter, i.e., the pair (K,n) is also OK.

Next, we have to determine the base case(s). It turns out that this problem is very easy
when K = 1. Whatever n is, there is only one way to add exactly one number less than or
equal to n to get n: use n itself. There is no other base case for this problem.

For the general case, we have this recursive formulation which is not too di�cult to derive:
at state (n,K) where K > 1, we can split n into one number X 2 [0..n] and n�X, i.e.,
n = X + (n�X). By doing this, we arrive at the sub-problem (n�X,K � 1), i.e., given a
number n�X, how many ways can K � 1 numbers less than or equal to n�X add up to
n�X? We can then sum all these ways.

These ideas can be written as the following Complete Search recurrence ways(n, K):

1. ways(n, 1) = 1 // we can only use 1 number to add up to n, the number n itself

2. ways(n, K) =
Pn

X=0 ways(n-X, K-1) // sum all possible ways, recursively

This problem has overlapping sub-problems. For example, the test case n = 1, K = 3 has
overlapping sub-problems: The state (n = 0, K = 1) is reached twice (see Figure 4.35 in
Section 4.6.1). However, there are only n⇥K possible states of (n,K). The cost of computing
each state is O(n). Thus, the overall time complexity is O(n2⇥K). As 1  n,K  100, this
is feasible. The answer can be found by calling ways(n, K).

Note that this problem just needs the result modulo 1M (i.e., the last 6 digits of the answer,
excluding leading zeroes). See Book 2 for a discussion on modular arithmetic.

Source code: ch3/dp/UVa10943.cpp|java|py|ml

2. UVa 10003 - Cutting Sticks

Abridged problem statement: Given a stick of length 1  l  1000 and 1  n  50 cuts to
be made to the stick (the cut coordinates A, lying in the range [0..l], are given). The cost
of a cut is determined by the length of the stick to be cut. Your task is to find a cutting
sequence so that the overall cost is minimized.

Example: l = 100, n = 3, and cut coordinates: A = {25, 50, 75} (already sorted)

Figure 3.16: Cutting Sticks Illustration

If we cut from left to right, then we will incur cost = 225.
1. First cut is at coordinate 25, total cost so far = 100;
2. Second cut is at coordinate 50, total cost so far = 100 + 75 = 175;
3. Third cut is at coordinate 75, final total cost = 175 + 50 = 225;
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However, the optimal answer is 200.
1. First cut is at coordinate 50, total cost so far = 100; (this cut is shown in Figure 3.16)
2. Second cut is at coordinate 25, total cost so far = 100 + 50 = 150;
3. Third cut is at coordinate 75, final total cost = 150 + 50 = 200;

How do we tackle this problem? An initial approach might be this Complete Search algo-
rithm: try all possible cutting points. Before that, we have to select an appropriate state
definition for the problem: the (intermediate) sticks. We can describe a stick with its two
endpoints: left and right. However, these two values can be huge48 and this can compli-
cate the solution later when we want to memoize their values. We can take advantage of
the fact that there are only n+1 smaller sticks after cutting the original stick n times. The
endpoints of each smaller stick can be described by 0, the cutting point coordinates, and l.
Therefore, we will add two more coordinates so that A = {0, the original A, and l}. This
way, we can denote a stick by the indices of its endpoints in A.

We can then use these recurrences for cut(left, right), where left/right are the
left/right indices of the current stick w.r.t. A. Originally, the stick is described by left = 0
and right = n+1, i.e., a stick with length [0..l]:

1. cut(i-1, i) = 0, 8i 2 [1..n+1] // if left+1 = right where left and right are
the indices in A, then we have a stick segment that does not need to be divided further.

2. cut(left, right) = min(cut(left, i) + cut(i, right) + (A[right]-A[left]))
8i 2 [left+1..right-1] // try all possible cutting points and pick the best.
The cost of a cut is the length of the current stick, captured in (A[right]-A[left]).
The answer can be found at cut(0, n+1).

Now let’s analyze the time complexity. Initially, we have n choices for the cutting points.
Once we cut at a certain cutting point, we are left with n� 1 further choices for the second
cutting point. This repeats until we are left with zero cutting points. Trying all possible
cutting points this way leads to an O(n!) algorithm, which is impossible for 1  n  50.

However, this problem has overlapping sub-problems. For example, in Figure 3.16 above,
cutting at index 2 (cutting point = 50) produces two states: (0, 2) and (2, 4). The same
state (2, 4) can also be reached by cutting at index 1 (cutting point 25) and then cutting at
index 2 (cutting point 50). Thus, the search space is actually not that large. There are only
(n+2)⇥(n+2) possible left/right indices or O(n2) distinct states and they can be memoized.
The time required to compute one state is O(n). Thus, the overall time complexity (of the
top-down DP) is O(n3). As n  50, this is a feasible solution.

Source code: ch3/dp/UVa10003.cpp|java|py (Knuth)|ml

Exercise 3.5.3.1*: Almost all of the source code for this section that is available in the
GitHub repository: https://github.com/stevenhalim/cpbook-code: (LIS, Coin Change,
TSP, and UVa 10003 - Cutting Sticks) are written in a top-down DP fashion due to the
preferences of the authors of this book. Rewrite them using the bottom-up DP approach.

Exercise 3.5.3.2*: Solve the Cutting Sticks problem in O(n2). Hint: Use the Knuth-Yao
DP Speedup by utilizing that the recurrence satisfies the Quadrangle Inequality (see the
details in Book 2). Study ch3/dp/UVa10003 knuth td.py for the details.

48This UVa 10003 is a rather old problem. In modern programming competitions, usually these (stick
endpoint) values are huge so that contestants need to represent the state using other (smaller) means.
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3.5.4 Dynamic Programming in Programming Contests

Basic (Greedy and) DP techniques are always included in popular algorithm textbooks, e.g.,
Introduction to Algorithms [5], Algorithm Design [35], Algorithms [6], etc. In this section,
we have discussed six classical DP problems and their solutions. A brief summary is shown
in Table 3.4. These classical DP problems, if they are to appear in a programming contest
today, will likely occur only as part of bigger and harder problems.

1D RSQ 2D RSQ LIS Knapsack CC TSP
State (i) (i,j) (i) (id,remW) (v) (pos,mask)
Space O(n) O(n2) O(n) O(nS) O(V ) O(2nn)
Transition subarray submatrix all j < i take/ignore all n coins all n cities
Time O(n) O(n3) O(n2) O(nS) O(nV ) O(2nn2)

Table 3.4: Summary of Classical DP Problems in this Section

To help keep up with the growing di�culty and creativity required in these techniques
(especially the non-classical DP), we recommend that you attempt more recent programming
contest problems and read their post-contest solutions/editorials, if any.

In the past (1990s), a contestant who is good at DP can become a ‘king of programming
contests’ as DP problems were usually the ‘decider problems’. Now, mastering DP is a
basic requirement! You cannot do well in programming contests without this knowledge.
However, we have to keep reminding the readers of this book not to claim that they know
DP if they only memorize the solutions of the classical DP problems! Try to master the art of
problem solving with DP: learn to determine the states (the DP table) that can uniquely and
e�ciently represent sub-problems and also how to fill up that DP table, either via top-down
recursion or bottom-up iteration.

There is no better way to master these problem solving paradigms than solving real
programming problems! Here, we list several examples. Once you are familiar with the
examples shown in this section, study the newer DP problems that have begun to appear in
recent programming contests.

Starred programming exercises solvable using Dynamic Programming:

a. Max 1D/2D Range Sum

1. Entry Level: UVa 10684 - The Jackpot * (standard; Kadane’s algorithm)

2. UVa 00787 - Maximum Sub ... * (max 1D range product ; be careful
with 0; use Java BigInteger)

3. UVa 01105 - Co↵ee Central * (LA 5132 - WorldFinals Orlando11; more
advanced 2D Range Sum Queries)

4. UVa 10755 - Garbage Heap * (max 2D range sum in 2 of the 3 dimen-
sions; max 1D range sum with Kadane’s algorithm on the 3rd dimension)

5. Kattis - commercials * (transform each input by -P; Kadane’s algorithm)

6. Kattis - prozor * (2D range sum with fix range; output formatting)

7. Kattis - sellingspatulas * (-8 per time slot initially; read sale data; 1D range
sum; complete search)

Extra UVa: 00108, 00507, 00836, 00983, 10074, 10667, 10827, 11951, 12640,
13095.

Extra Kattis: alicedigital, foldedmap, purplerain, shortsell.

Also see more examples in Book 2.
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b. Longest Increasing Subsequence (LIS)

1. Entry Level: UVa 00481 - What Goes Up? * (O(n log k) LIS+solution)

2. UVa 01196 - Tiling Up Blocks * (LA 2815 - Kaohsiung03; sort all the
blocks in increasing L[i], then we get the classical LIS problem)

3. UVa 10534 - Wavio Sequence * (must use O(n log k) LIS twice)

4. UVa 11790 - Murcia’s Skyline * (combination of LIS+LDS; weighted)

5. Kattis - increasingsubsequence * (LIS; n  200; print lexicographically small-
est solution, 99% similar to ‘longincsubseq’)

6. Kattis - nesteddolls * (sort in one dimension; Dilworth’s theorem; LIS in the
other; also available at UVa 11368 - Nested Dolls)

7. Kattis - trainsorting * (max(LIS(i)+LDS(i)-1), 8i 2 [0 . . . n-1]; also available
at UVa 11456 - Trainsorting)

Extra UVa: 00111, 00231, 00437, 00497, 10131, 10154.

Extra Kattis: alphabet, longincsubseq, manhattanmornings, studentsko.

c. 0-1 Knapsack (Subset-Sum)

1. Entry Level: UVa 10130 - SuperSale * (very basic 0-1 Knapsack problem)

2. UVa 01213 - Sum of Di↵erent Primes * (LA 3619 - Yokohama06;
extension of 0-1 Knapsack; s: (id, remN, remK) instead of s: (id, remN))

3. UVa 11566 - Let’s Yum Cha * (Knapsack variant: double each dim sum;
add one parameter to see if we have bought too many dishes)

4. UVa 11832 - Account Book * (interesting DP; s: (id, val); use o↵set to
handle negative numbers; t: plus or minus; print solution)

5. Kattis - knapsack * (basic DP Knapsack; print the solution)

6. Kattis - orders * (interesting Knapsack variant; print the solution)

7. Kattis - presidentialelections * (pre-process the input to discard non winnable
states; be careful of negative total voters; then standard DP Knapsack)

Extra UVa: 00431, 00562, 00990, 10261, 10616, 10664, 10690, 10819, 11003,
11341, 11658, 12621.

Extra Kattis: muzicari, ninepacks.

Also see NP-hard problems in Book 2.

d. Coin-Change (CC)

1. Entry Level: UVa 00674 - Coin Change * (basic Coin-Change problem)

2. UVa 00242 - Stamps and ... * (LA 5181 - WorldFinals Nashville95;
Complete Search + DP Coin-Change)

3. UVa 10448 - Unique World * (after dealing with traversal on tree, you
can reduce the original problem into Coin-Change; not trivial)

4. UVa 11259 - Coin Changing Again * (part of the problem is DP Coin-

Change with restricted number of coins per type; inclusion-exclusion)

5. Kattis - bagoftiles * (count number of ways to do Coin-Change; meet in
the middle; DP combinatorics (n choose k) to find the answer for a+b)

6. Kattis - canonical * (complete search possible range of counter examples; do
both greedy Coin-Change and DP Coin-Change)

7. Kattis - exactchange2 * (a variation to the Coin-Change problem; also
available at UVa 11517 - Exact Change)

Extra UVa: 00147, 00166, 00357, 10313, 11137.

Also see NP-hard problems in Book 2.
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e. Traveling-Salesman-Problem (TSP)

1. Entry Level: Kattis - beepers * (DP or recursive backtracking with su�cient
pruning; also available at UVa 10496 - Collecting Beepers)

2. UVa 00216 - Getting in Line * (LA 5155 - WorldFinals KansasCity92;
DP TSP problem; but still solvable with backtracking)

3. UVa 11795 - Mega Man’s Mission * (DP TSP variant; counting paths
on DAG; DP+bitmask; let Mega Buster owned by a dummy ‘Robot 0’)

4. UVa 12841 - In Puzzleland (III) * (simply find and print the lexico-
graphically smallest Hamiltonian-Path; use DP TSP technique)

5. Kattis - bustour * (LA 6028 - WorldFinals Warsaw12; DP TSP variant; also
available at UVa 01281 - Bus Tour)

6. Kattis - cycleseasy * (Count number of Hamiltonian-Tours)

7. Kattis - errands * (map location names to integer indices; DP TSP)

Extra Kattis: maximizingyourpay, pokemongogo, race.

Also see NP-hard problems in Book 2.

f. DP level 1

1. Entry Level: UVa 10003 - Cutting Sticks * (s: (l, r))

2. UVa 10912 - Simple Minded ... * (s: (len, last, sum); t: try next char)

3. UVa 11420 - Chest of ... * (s: (prev, id, numlck); lock/unlock this chest)

4. UVa 13141 - Growing Trees * (s: (level, branch previously); t: not
branching if branch previously or branching (one side) otherwise)

5. Kattis - nikola * (s: (pos, last jump); t: jump forward or backward)

6. Kattis - spiderman * (simple DP; go up or down; print solution)

7. Kattis - ticketpricing * (LA 6867 - RockyMountain15; see UVa 11450 dis-
cussed in this section; real life problem; print part of the solution)

Extra UVa: 00116, 01261, 10036, 10337, 10446, 10520, 10688, 10721, 10910,
10943, 10980, 11026, 11407, 11450, 11703, 12654, 12951.

Extra Kattis: keyboardconcert, permutationdescent, weightofwords, wordclouds.

g. DP level 2

1. Entry Level: UVa 12324 - Philip J. Fry ... * (spheres > n are useless)

2. UVa 00662 - Fast Food * (s: (L, R, k), that denotes the minimum distance
sum to cover restaurants at index [L..R] with k depots left)

3. UVa 12862 - Intrepid climber * (1D DP to compute the path cost from
every vertex that goes up to the mountain top; compute answer)

4. UVa 12955 - Factorial * (there are only 8 eligible factorials under 100 000;
we can use DP; s: (i, sum); t: take/stay, take/move, don’t take/move)

5. Kattis - kutevi * (s: (360 integer degrees))

6. Kattis - tight * (s: (i, j); #tight words of length i that end in digit j divided
by #words: (k + 1)n; also available at UVa 10081 - Tight words)

7. Kattis - walrusweights * (backtracking with memoization)

Extra UVa: 10039, 10069, 10086, 10120, 10164, 10239, 10400, 10465, 10651,
11485, 11514, 11908.

Extra Kattis: debugging, drivinglanes, watersheds.

h. Also see Chapter 4 and a few others for more DP-related programming exercises.
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3.6 Solution to Non-Starred Exercises

Exercise 3.2.1.1: The solution is a simple recursive backtracking with bitmask. See our
implementation at ch3/cs/UVa11742.java.

Exercise 3.2.1.2: Interesting usage of C++ STL next permutation is shown below:

int n = 7, k = 3;
vector<int> taken(n, 0); // initially none taken
for (int i = n-k; i < n; ++i) taken[i] = 1; // last k are taken
do { // iterate C(7, 3) = 35x

for (int i = 0; i < n; ++i)
if (taken[i])

printf("%d ", i);
printf("\n");

}
while (next_permutation(taken.begin(), taken.end()));

Exercise 3.3.1.1: This problem can be solved without the ‘Binary Search the Answer’
technique. Simulate the journey once. We just need to find the largest fuel requirement in
the entire journey and make the fuel tank be su�cient for it. For problem like this one,
those who are stronger in Mathematics will try to find this more elegant and faster solution
whereas those who are stronger in Competitive Programming techniques will use BSTA
approach and rely on Computer’s speed as the extra O(log ans) factor is virtually negligible.

Exercise 3.3.1.2: A sample BSTA code when the (smallest) answer lies in an integer range
[lo..hi] is as follows:

int lo = 0, hi = 1e6;
for (int i = 0; i < 50; ++i) { // log_2(1e6/1e-9) ~= 49

int mid = (lo+hi) >> 1; // looping 50x is enough
// int mid = lo + (hi-lo) >> 1; // alternative way
can(mid) ? hi = mid : lo = mid; // ternary operator

}

Exercise 3.5.1.1: Garment g = 0, take the third model (cost 8); Garment g = 1, take
the first model (cost 10); Garment g = 2, take the first model (cost 7); Money used = 25.
Nothing left. Test case D is also solvable with Greedy algorithm.

Exercise 3.5.1.2: No, this state formulation does not work. We need to know how much
money we have left at each sub-problem so that we can determine if we still have enough
money to buy a certain model of the current garment.

Exercise 3.5.1.3: Please see the implementation at ch3/dp/UVa11450 td.py.

Exercise 3.5.2.1: The solution uses Sparse Table data structure discussed in Book 2.

Exercise 3.5.2.2: The iterative Complete Search solution to generate and check all possible
subsets of size n runs in O(n⇥ 2n). This is OK for n  20 but too slow when n > 20. The
DP solution presented in Section 3.5.2 runs in O(n⇥ S). If S is not that large, we can have
a much larger n than just 20 items as long as n⇥ S < 1M .
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3.7 Chapter Notes

Here is one important advice for this chapter: please do not just memorize the solutions
for each problem discussed (except for classic greedy algorithms), but instead remember
and internalize the thought process and problem solving strategies used. Good problem
solving skills are more important than memorized solutions for well-known Computer Science
problems when dealing with (often creative and novel) contest problems.

Many problems in IOI or ICPC require a combination of these problem solving strategies
(see Book 2). If we have to nominate only one chapter in this book that contestants have to
really master, we would choose this one, especially for IOI contestants.

In Table 3.5, we compare the four problem solving techniques based on their likely re-
sults for various problem types. In Table 3.5 and the list of programming exercises in this
section (and later in Chapter 8), we see that there are more Complete Search (CS) problems
(excluding harder CS in Book 2) than DP (excluding harder DP in Book 2)/Greedy (exclud-
ing MST+SSSP problems in Chapter 4) problems, with D&C problems being the fewest.
Therefore, we recommend that readers concentrate on improving their CS, DP, Greedy, and
D&C skills, in that order.

CS Problem D&C Problem Greedy Problem DP Problem
CS Solution AC TLE/AC TLE/AC TLE/AC
D&C Solution WA AC WA WA
Greedy Solution WA WA AC WA
DP Solution MLE/TLE/AC MLE/TLE/AC MLE/TLE/AC AC
Frequency High (Very) Low Medium-High High

Table 3.5: Comparison of Problem Solving Techniques (Rule of Thumb only)

We will conclude this chapter by remarking that for some real-life problems, especially those
that are classified as NP-hard [5], many of the approaches discussed in this chapter will
not work. For example, the 0-1 Knapsack (Subset-Sum) Problem which has an O(nS)
DP complexity is too slow if S is big; Coin-Change Problem which has an O(nV ) DP
complexity is too slow if V is big; TSP which has a O(2n�1⇥n2) DP complexity is too slow
if n is any larger than 19. For such problems, we can resort to heuristics or local search
techniques such as Tabu Search [23, 22], Genetic Algorithms, Ant-Colony Optimizations,
Simulated Annealing, Beam Search, etc. However, all these heuristic-based searches are not
in the IOI syllabus [16] and also not widely used in ICPC as of year 2020.

Statistics of CP Editions 1st 2nd 3rd 4th
Number of Pages 32 32 52 63 (+21%)
Written Exercises 7 16 21 9+10*=19 (-10%)
Programming Exercises 109 194 245 568 (+132%)

The breakdown of the number of programming exercises from each section is shown below:

Section Title Appearance % in Chapter % in Book
3.2 Complete Search 257 ⇡ 45% ⇡ 7.4%
3.3 Divide and Conquer 59 ⇡ 10% ⇡ 1.7%
3.4 Greedy 118 ⇡ 21% ⇡ 3.4%
3.5 Dynamic Programming 134 ⇡ 24% ⇡ 3.9%

Total 568 ⇡ 16.4%
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Chapter 4

Graph

Everyone is on average ⇡ six steps away from any other person on Earth
— Stanley Milgram - the Six Degrees of Separation experiment in 1969, [56]

4.1 Overview and Motivation

Many real-life problems can be classified as graph problems. Some have e�cient1 (polyno-
mial) solutions. Some do not have them yet2 (see Book 2). In this relatively big chapter with
lots of figures, we discuss graph problems3 that commonly appear in programming contests,
the algorithms to solve them, and the practical implementations of these algorithms. We
cover topics ranging from basic graph traversals, minimum spanning trees, single-source/all-
pairs shortest paths, and discuss graphs with special properties. Later in Chapter 8-9, we
will cover network flows, graph matching4, and harder graph problems.

This chapter is unfortunately not written for readers who have zero knowledge of graph
theory. In writing this chapter, we assume that the readers are already familiar with the
basic graph terminologies listed in Table 4.1. We will elaborate on how to implement and
apply e�cient graph algorithms to graph problems that commonly appear in programming
contests. Therefore, if you encounter any unfamiliar term in Table 4.1, please read other
reference books like [5, 51] (or browse the Internet) and search for that particular term.

Vertices/Nodes Edges Set V ; size |V | Set E; size |E| Graph G(V,E)
Un/Weighted Un/Directed In/Out Degree Sparse/Dense Component
Path Cycle Isolated Reachable Connected
Self-Loop Multiple Edges Multigraph Simple Graph Sub-Graph
Cut Vertex Bridge SCC Matching Line
DAG Tree/Forest Bipartite Eulerian Complete
Grid Graph Wheel Graph Line Graph Hamiltonian Isomorphism

Table 4.1: List of Important Graph Terminologies

1In 1965, Jack Edmonds published his famous paper ‘Paths, Trees, and Flowers [10]. In the paper, he
wrote that algorithms with polynomial time complexity are e�cient algorithms.

2Many hard graph problems are classified as NP-hard/complete problems [18]. If P is really 6= NP—which
many Computer Scientists currently believe, then there is no polynomial algorithm for these problems.

3Most graph problems in programming contests involve simple graph, i.e., graph with no self-loop nor
multiple edges between the same pair of vertices. The non-simple graphs, i.e., the multigraphs, usually have
more complicated solutions and/or special cases which make them not suitable for programming contests.

4Graph matching is an interesting problem in programming contests. Although it has several polynomial
solutions for general graph [10], the algorithm is a bit complex so that in this chapter, we only discuss the
simpler version of this problem on special Bipartite Graph in Section 4.6.3.
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We also assume that the readers have read the various ways to represent graph information
that have been discussed earlier in Section 2.4.1. That is, we will directly use the terms like:
Adjacency Matrix, Adjacency List, Edge List, and implicit graph without redefining them.
Please revise Section 2.4.1 if you are not yet familiar with these graph data structures.

Our research on graph problems in recent ICPC (Asia) Regional and World Finals con-
tests reveals that there is at least one (and possibly more) graph problem(s) in an ICPC
problem set. However, since the range of graph problems is so big, each specific graph prob-
lem only has a small probability of appearance. So the question is: “Which ones do we have
to focus on?”. In our opinion, there is no clear answer for this question. If you want to do
well in ICPC, you have no choice but to study and master all these materials.

For IOI, the syllabus [16] restricts IOI tasks to a subset of material mentioned in this
chapter. This is logical as high school students competing in IOI are not expected to be
well-versed with too many problem-specific algorithms. To assist the readers aspiring to
take part in the IOI, we will mention whether a particular section in this chapter is currently
outside the syllabus.

To help the reader in understanding the graph algorithms discussed in this Chapter,
we have built lots of visualization algorithms in VisuAlgo (https://visualgo.net). In
fact, VisuAlgo was started as a project of visualizing graph algorithms before we extend
it to include many other data structures and algorithms [24]. We encourage the reader to
try various graph visualizations in VisuAlgo with your own input graph and see the graph
algorithm animated live in front of you.

Profile of Algorithm Inventors

Robert Endre Tarjan (born 1948) is an American computer scientist. He is the discoverer
of several important graph algorithms. The most important one in the context of competitive
programming is the algorithm for finding Strongly Connected Components in a directed
graph and the algorithm to find Articulation Points and Bridges in an undirected graph
(discussed in Section 4.2 together with other DFS variants invented by him and his colleagues
[55]). He also invented Tarjan’s o↵-line Least Common Ancestor algorithm, invented
Splay Tree data structure, and analyze the time complexity of theUnion-Find Disjoint
Sets data structure (see Section 2.4.2).

John Edward Hopcroft (born 1939) is an American computer scientist. He is the Professor
of Computer Science at Cornell University. Hopcroft received the Turing Award—the most
prestigious award in the field and often recognized as the ‘Nobel Prize of computing’ (jointly
with Robert Endre Tarjan in 1986)—for fundamental achievements in the design and analysis
of algorithms and data structures. Along with his work with Tarjan on planar graphs (and
some other graph algorithms like finding articulation points/bridges using DFS) he is
also known for the Hopcroft-Karp algorithm for finding matchings in Bipartite Graphs,
invented together with Richard Manning Karp [26] (see Book 2).

Sambasiva Rao Kosaraju is a professor of Computer Science at Johns Hopkins University,
who has done extensive work in the design and analysis of parallel and sequential algorithms.
In 1978, he wrote a paper describing a method to e�ciently compute strongly connected
members of a directed graph, a method later called as the Kosaraju’s algorithm.
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4.2 Graph Traversal

4.2.1 Overview and Motivation

Suppose that we already store our graph in a graph data structure as in Section 2.4.1 (or the
graph is implicit). We can know some basic properties of the graph like the size of V , E, the
list of neighbors of a certain vertex u, etc. However, to gain more meaningful information
about the graph like the (indirect) connectivity between two vertices u and v, the number
of Connected Components (CC) of the graph, etc, we need to traverse/explore it.

First, we need to decide where we start. Sometimes it can be arbitrary (and usually we
conveniently choose the first vertex—vertex 0) or the problem mandates us to start from
a designated source vertex s. There are two basic graph traversal algorithms: Depth First
Search (DFS) and Breadth First Search (BFS). Both do similar thing: from one vertex u,
go to another unvisited vertex v by following the edge (u, v). They are just using di↵erent
underlying data structure (a–usually implicit–stack for DFS versus a queue for BFS) and
thus their vertex visitation order is (usually5) di↵erent.

4.2.2 Depth First Search (DFS)

Depth First Search—abbreviated as DFS—is a simple algorithm for traversing a graph.
Starting from a distinguished source vertex, DFS will traverse the graph ‘depth-first’. Every
time DFS hits a branching point (a vertex with more than one neighbors), DFS will choose
one of the unvisited neighbor(s) and visit this neighbor vertex. DFS repeats this process and
goes deeper until it reaches a vertex where it cannot go any deeper. When this happens,
DFS will ‘backtrack’ and explore another unvisited neighbor(s), if any.

This graph traversal behavior can be implemented easily with the recursive code below.
Our DFS implementation uses the help of a global vector of integers: vi dfs_num to distin-
guish the state of each vertex. For the basic DFS implementation, we only use vi dfs num
to distinguish between UNVISITED versus VISITED states. Initially, all values in dfs_num are
set to UNVISITED. We will use vi dfs_num for other purposes later6. Calling dfs(u) starts
DFS from a vertex u, marks vertex u as VISITED, and then recursively visits each UNVISITED
neighbor v of u (i.e., edge (u, v) exists in the graph and dfs_num[v] == UNVISITED).

enum { UNVISITED = -1, VISITED = -2 }; // basic flags
vi dfs_num; // initially all UNVISITED

void dfs(int u) { // normal usage
dfs_num[u] = VISITED; // mark u as visited
for (auto &[v, w] : AL[u]) // C++17 style, w ignored

if (dfs_num[v] == UNVISITED) // to avoid cycle
dfs(v); // recursively visits v

}

On the sample graph in Figure 4.1—left, dfs(0)—calling DFS from a starting vertex u = 0—
will trigger this sequence of visitation: 0 ! 1 ! 2 ! 3 ! 4 (see Figure 4.1—right). This
sequence is ‘depth-first’, i.e., DFS goes to the deepest possible vertex from the start vertex
before attempting another branch (there is none in this case).

5We need to construct special graphs so that both DFS and BFS visit exactly the same sequence of
vertices, e.g., a line graph with one of its endpoint as the source vertex.

6If your intention is just to use the basic form of DFS, you can actually change the code from vi dfs num

into a more compact vector<bool> visited.
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Figure 4.1: Left: Sample Graph, Right: Running dfs(0) on Sample Graph

Note that this sequence of visitation depends very much on the way we order the neighbors
of a vertex7, i.e., the sequence 0 ! 1 ! 3 ! 4 (backtrack to 3) ! 2 is also a possible
visitation sequence on the same graph.

One call of dfs(u) will only visit all vertices that are directly or indirectly connected to
(reachable by) vertex u. That is why vertices {5, 6, 7, 8} in Figure 4.1 remain unvisited
(unreachable) after calling dfs(0). Later in Section 4.2.4, we will extend this a bit so that
we can explore the entire graph, even if there are multiple Connected Components.

The time complexity of DFS (and BFS later in Section 4.2.3) depends on the graph
data structure used. If the graph with V vertices and E edges is stored as an Adjacency
Matrix (AM), Adjacency List (AL), and Edge List (EL), respectively, we require O(V ),
O(k), and O(E) to enumerate the list of neighbors of a vertex, respectively (note: k is the
number of actual neighbors of a vertex). Since DFS and BFS explores all outgoing edges of
each of the V vertices, it’s runtime depends on the underlying graph data structure speed in
enumerating neighbors. Therefore, the time complexity of DFS and BFS are O(V ⇥V = V 2),
O(max(V,

PV�1
i=0 ki) = V +E), and O(V ⇥E = V E) to traverse graph stored in an AM, AL,

and EL, respectively. As AL is the most e�cient data structure for graph traversal, it may
be beneficial to convert an AM or an EL-based input graph into an AL first (see Exercise
2.4.1.4*) before actually traversing the graph.

DFS versus Recursive Backtracking

The DFS code shown here is similar to the recursive backtracking code shown earlier in
Section 3.2.2. If we compare the pseudocode of a typical backtracking code (replicated
below) with the DFS code shown above, we can see that the main di↵erence is the flagging
of visited vertices (states). Backtracking (automatically) un-flag visited vertices (reset the
state to previous state) when the recursion backtracks (as there is no global vi dfs num
that keeps track of the visitation status) to allow re-visitation of those vertices (states)
from another branch. By not allowing re-visitation of vertices of a graph even from another
branch (via the global vi dfs num checks), DFS runs in O(V +E), but the time complexity
of backtracking is exponential. In short, backtracking allows us to explore all (up to V !)
paths from source vertex (but slow), but DFS only explores one of such path (and fast).

void backtrack(state) {
for (each neighbor of state) { // try all permutations

if (neighbor is an end-state) continue; // base (terminating) case
if (neighbor is an invalid-state) continue; // optional: for speed up
backtrack(neighbor);

}
}

7For simplicity, we usually just order the vertices based on their ascending vertex numbers, e.g., in Figure
4.1, vertex 1 has vertex {0, 2, 3} as its neighbor, in that order.
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4.2.3 Breadth First Search (BFS)

Breadth First Search—abbreviated as BFS—is another graph traversal algorithm. Starting
from a distinguished source vertex, BFS will traverse the graph ‘breadth-first’. That is, BFS
will visit the source vertex, then the vertices that are direct neighbors of the source vertex
(first layer), neighbors of direct neighbors (second layer), and so on, layer by layer.

BFS starts with the insertion of the source vertex s into a queue, then processes the
queue as follows: take out the front most vertex u from the queue, enqueue all unvisited
neighbors of u (usually, the neighbors are ordered based on their vertex numbers), and mark
them as visited. With the help of the queue, BFS will visit vertex s and all vertices in the
connected component that contains s layer by layer. BFS algorithm also runs in O(V +E),
O(V 2), and O(V E) on a graph represented using an AL, AM, and EL, respectively (similar
explanation as with DFS analysis).

Implementing BFS is easy if we utilize C++ STL, Java API, or Python/OCaml standard
library. We use queue to order the sequence of visitation and vector<int> (or vi) dist
to record if a vertex u has been visited (dist[u] is no longer INF) or not (dist[u] is still
INF)—which at the same time also records the distance (layer number) of each vertex from
the source vertex. This distance computation feature is used later to solve a special case of
Single-Source Shortest Paths problem (see Section 4.4.2 and Book 2).

// inside int main()---no recursion
vi dist(V, INF); dist[s] = 0; // initial distances
queue<int> q; q.push(s); // start from source
while (!q.empty()) {

int u = q.front(); q.pop(); // queue: layer by layer!
for (auto &[v, w] : AL[u]) { // C++17 style, w ignored

if (dist[v] != INF) continue; // already visited, skip
dist[v] = dist[u]+1; // now set dist[v] != INF
q.push(v); // for the next iteration

}
}

Figure 4.2: Example Partial Animation of BFS, see VisuAlgo for a Live Animation

If we run BFS from vertex 5 (i.e., the source vertex s = 5) on the connected undirected
graph in Figure 4.2, we will visit the vertices in the following order: {5 (source vertex (layer
0), see Figure 4.2—left}, {1, 6, 10 (layer 1), see Figure 4.2—middle}, {0, 2, 11, 9 (layer 2)},
{4, 3, 12, 8 (layer 3)}, and finally {7 (layer 4), see Figure 4.2—right, which is also the BFS
(and also Shortest Paths) spanning tree of the initial graph rooted at s = 5}.
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4.2.4 Finding Connected Components (Undirected Graph)

DFS and BFS are not only useful for traversing a graph (implicit or explicit). They can be
used to solve many other graph problems. The first few problems discussed in this section
can be solved with either DFS or BFS although some of the last few problems are more
suitable for DFS only.

The fact that one single call of dfs(u) (or bfs(u)) from source vertex u will only visit
vertices that are actually connected to (or reachable by) u can be utilized to find (and to
count the number of) Connected Components (CCs) in an undirected graph (see Section
4.2.10 for a similar problem on directed graph). We can simply use the following code to
restart DFS (or BFS) from one of the remaining unvisited vertices to find the next Connected
Component. This process is repeated until all vertices have been visited and has an overall
time complexity of O(V + E) as each vertex and edge is only visited once, despite we
potentially call dfs(u) (or bfs from source vertex u) up to V times.

// inside int main()---this is the DFS solution
dfs_num.assign(V, UNVISITED);
int numCC = 0;
for (int u = 0; u < V; ++u) // for each u in [0..V-1]

if (dfs_num[u] == UNVISITED) { // if that u is unvisited
printf("CC %d:", ++numCC);
dfs(u);
printf("\n");

}
printf("There are %d connected components\n", numCC);

// For the sample graph in Figure 4.1, the output is like this:
// CC 1: 0 1 2 3 4
// CC 2: 5
// CC 3: 6 7 8
// There are 3 connected components

Source code: ch4/traversal/dfs cc.cpp|java|py|ml

Exercise 4.2.4.1: What are the minimum and maximum number of CCs in an undirected
graph G with V vertices and E (0  E  V ⇥ (V � 1)/2) edges?

Exercise 4.2.4.2: UVa 00459 - Graph Connectivity is basically this problem of finding
connected components of an undirected graph. Solve it using the DFS solution shown above!
However, we can also use Union-Find Disjoint Sets data structure (see Section 2.4.2) or BFS
(see Section 4.2.3) to solve this graph problem. How?

Exercise 4.2.4.3*: Draw an undirected unweighted simple graph with exactly 7 vertices
and 11 edges such that there are exactly 3 Connected Components. Is it possible?

Exercise 4.2.4.4*: You are given an undirected graph with V vertices, E edges, and the
entire sequence of K distinct vertices that have to be removed from the graph one after
another (1  V,E  200 000; 1  K  V ). Every time a vertex is removed, report the
current number of CCs in the graph. Can you solve this problem in O(V + E) instead of
the obvious but extremely slow O(K ⇥ (V + E))?
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4.2.5 Flood Fill (Implicit 2D Grid Graph)

DFS (or BFS) can be used for other purposes than just finding (and counting the number
of) connected components. Here, we show how a modification of the O(V +E) dfs(u) (we
can also use bfs(u)) can be used to label (also known in CS terminology as ‘to color ’) and
count the size of each component. This variant is more famously known as ‘flood fill’ and
usually performed on implicit graphs (usually 2D grids).

int dr[] = { 1, 1, 0,-1,-1,-1, 0, 1}; // the order is:
int dc[] = { 0, 1, 1, 1, 0,-1,-1,-1}; // S/SE/E/NE/N/NW/W/SW

int floodfill(int r, int c, char c1, char c2) { // returns the size of CC
if ((r < 0) || (r >= R)) return 0; // outside grid, part 1
if ((c < 0) || (c >= C)) return 0; // outside grid, part 2
if (grid[r][c] != c1) return 0; // does not have color c1
int ans = 1; // (r, c) has color c1
grid[r][c] = c2; // to avoid cycling
for (int d = 0; d < 8; ++d)

ans += floodfill(r+dr[d], c+dc[d], c1, c2); // the code is neat as
return ans; // we use dr[] and dc[]

}

Sample Application: UVa 00469 - Wetlands of Florida

Let’s see an example below (UVa 00469 - Wetlands of Florida). The implicit graph is a 2D
grid where the vertices are the cells in the grid. ‘W’ denotes a wet cell and ‘L’ denotes a land
cell. The edges are the connections between a ‘W’ cell and its S/SE/E/NE/N/NW/W/SW
‘W’ cell(s). That is, a wet area is defined as connected cells labeled with ‘W’. We can label
(and simultaneously count the size of) a wet area by using floodfill function. The example
below shows an execution of floodfill from row 2, column 1 (0-based indexing), replacing
the ‘W’s to ‘.’s.

We remark that there are a good number of flood fill problems in UVa and Kattis online
judges [44, 34] with a high profile example: UVa 01103 - Ancient Messages (ICPC World
Finals 2011 problem). It may be good for the readers to attempt a few flood fill problems
listed in the programming exercises of this section to master this technique!

// inside int main()
// read the grid as a global 2D array + read (row, col) query coordinates
printf("%d\n", floodfill(row, col, ‘W’, ‘.’)); // count size of wet area

// LLLLLLLLL LLLLLLLLL
// LLWWLLWLL LL..LLWLL // The size of CC
// LWWLLLLLL (R2,C1) L..LLLLLL // with one ‘W’
// LWWWLWWLL L...L..LL // at (R2, C1) is 12
// LLLWWWLLL ======> LLL...LLL
// LLLLLLLLL LLLLLLLLL // Notice that all these
// LLLWWLLWL LLLWWLLWL // connected ‘W’s are
// LLWLWLLLL LLWLWLLLL // replaced with ‘.’s
// LLLLLLLLL LLLLLLLLL // after floodfill

Source code: ch4/traversal/UVa00469.cpp|java|py|ml
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4.2.6 Topological Sort (Directed Acyclic Graph)

Topological sort/ordering of a Directed Acyclic Graph (DAG) is a linear ordering of the
vertices in the DAG so that vertex u comes before vertex v if directed edge u ! v exists
in the DAG (see Figure 4.3). Every DAG has at least one (a Singly Linked List-like DAG),
possibly more than one topological sorts, and up to n! topological sorts (a DAG with n
vertices and 0 edge). There is no possible topological ordering of a non DAG.

One application of topological sorting is to find a possible sequence of modules that a
University student has to take to fulfill graduation requirement. Each module has certain
pre-requisites to be met. These pre-requisites are never cyclic, so they can be modeled as a
DAG. Topological sorting this module pre-requisites DAG gives the student a linear list of
modules to be taken one after another without violating the pre-requisites constraints.

Simple DFS Variant

There are several algorithms to find one topological sort of a DAG. The simplest way is to
slightly modify the DFS implementation that we presented earlier in Section 4.2.2. This
algorithm will only output one (of possibly many other) valid topological sort of a given
DAG. See Exercise 4.2.6.1 and Exercise 4.2.6.2* for other variations.

Figure 4.3: Left: A DAG, Right: The Same DAG Redrawn in its Topological Sort Order

void toposort(int u) {
dfs_num[u] = VISITED;
for (auto &[v, w] : AL[u])

if (dfs_num[v] == UNVISITED)
toposort(v);

ts.push_back(u); // this is the only change
}

// inside int main()
dfs_num.assign(V, UNVISITED); // global variable
ts.clear(); // global variable
for (int u = 0; u < V; ++u) // same as finding CCs

if (dfs_num[u] == UNVISITED)
toposort(u);

reverse(ts.begin(), ts.end()); // reverse ts or
for (auto &u : ts) // simply read the content

printf(" %d", u); // of ts backwards
printf("\n");

// For the sample graph in Figure 4.3, the output is like this:
// 7 6 0 1 2 5 3 4

Source code: ch4/traversal/toposort.cpp|java|py
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In toposort(u), we append u to the back of a list (vector) of explored vertices only after
visiting all the vertices in the subtree below u in the DFS spanning tree, i.e., u’s children, if
any. This is a kind of post-order traversal in (binary) tree traversal terminology and doing
this satisfies the topological sort requirement.

We append u to the back of this vector because C++ STL vector, Java ArrayList,
and Python list only support e�cient O(1) insertion from the back. The list will be in
reversed order, but we can work around this issue by reversing the print order in the output
phase. Alternatively, we can also use C++ STL list, Java LinkedList, or Python deque
instead as they have e�cient O(1) insertion from the front too. However, because we have
said in Chapter 2 that we want to avoid using Linked List data structure in competitive
programming, we decided to use vi ts here.

This simple algorithm for finding (one valid) topological sort is due to Robert Endre
Tarjan. It runs in O(V +E) as with DFS as it does the same work as the original DFS plus
one additional constant operation.

Kahn’s Algorithm

Next, we show an alternative algorithm for finding a topological sort (that is possibly di↵erent
from the one found by the DFS modification algorithm above): Kahn’s algorithm [33]. It
looks like a ‘modified BFS’ albeit the chosen data structure is actually much more flexible
(see Exercise 4.2.6.2*). Some problems, e.g., UVa 11060 - Beverages, requires this Kahn’s
algorithm to produce the required topological sort instead of the DFS-based algorithm shown
earlier. Here, the problem requires us to prioritize certain (lower index) vertices first. A
Priority Queue data structure can help us satisfy this requirement.

// enqueue vertices with zero in-degree into a min (priority) queue pq
priority_queue<int, vi, greater<int>> pq; // min priority queue
for (int u = 0; u < N; ++u)

if (in_degree[u] == 0) // next to be processed
pq.push(u); // smaller index first

while (!pq.empty()) { // Kahn’s algorithm
int u = pq.top(); pq.pop(); // process u here
for (auto &v : AL[u]) {

--in_degree[v]; // virtually remove u->v
if (in_degree[v] > 0) continue; // not a candidate, skip
pq.push(v); // enqueue v in pq

}
}

Source code: ch4/traversal/UVa11060.cpp|java|py|ml

Exercise 4.2.6.1: The topological sort code shown above can only generate one valid
topological ordering of the vertices of a DAG. What should we do if we want to output all
(or count the number of) valid topological orderings of the vertices of a DAG?

Exercise 4.2.6.2*: If we replace priority queue pq in the code above with (a queue|a stack|a
vector|a hash table|a set), does Kahn’s algorithm remains correct? Why or why not?

Exercise 4.2.6.3*: Draw a graph with V = 7 vertices and any number of directed edges so
that there are exactly (a). 840 and (b). 21 unique topological orderings!
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4.2.7 Bipartite Graph Check (Undirected Graph)

Bipartite Graph is a special graph (discussed in more details later in Section 4.6) with the
following characteristics: the set of vertices V can be partitioned into two disjoint sets V1

and V2 and all undirected edges (u, v) 2 E have the property that u 2 V1 and v 2 V2. This
makes a Bipartite Graph free from odd-length cycle (see Exercise 4.2.7.1).

Bipartite Graph with n and m vertices in set V1 and V2, respectively, can still be a dense
graph. See Exercise 4.2.7.2 for characteristics of a Bipartite Graph with many edges.

Bipartite Graph has important applications that we will see later in Section 4.6.3 and in
Book 2. In this subsection, we just want to check if a graph is bipartite (or 2/bi-colorable8)
to solve problems like UVa 10004 - Bicoloring.

We can use either BFS or DFS for this check, but we feel that BFS is more natural. The
modified BFS code below starts by coloring the source vertex (zeroth layer) with value 0,
color the direct neighbors of the source vertex (first layer) with value 1, color the neighbors
of direct neighbors (second layer) with value 0 again, and so on, alternating between value 0
and value 1 as the only two valid colors. If we encounter any violation(s) along the way—an
edge with two endpoints having the same color, then we can conclude that the given input
graph is not a Bipartite Graph.

// inside int main()
int s = 0;
queue<int> q; q.push(s);
vi color(n, INF); color[s] = 0;
bool isBipartite = true; // add a Boolean flag
while (!q.empty() && isBipartite) { // as with original BFS

int u = q.front(); q.pop();
for (auto &v : AL[u]) {

if (color[v] == INF) { // don’t record distances
color[v] = 1-color[u]; // just record two colors
q.push(v);

}
else if (color[v] == color[u]) { // u & v have same color

isBipartite = false; // a coloring conflict :(
break; // optional speedup

}
}

}

Source code: ch4/traversal/UVa10004.cpp|java|py|ml

Exercise 4.2.7.1: Prove this statement: “An undirected graph is Bipartite if and only if it
has no odd-length cycle”!

Exercise 4.2.7.2: A simple graph with V vertices is found out to be a Bipartite Graph.
What is the maximum possible number of edges that this graph has?

Exercise 4.2.7.3: Prove this statement: “A tree is also a Bipartite Graph”!

Exercise 4.2.7.4*: Implement bipartite check using DFS instead!

8See Book 2 to see the general, NP-complete version of this problem: Graph-Coloring.
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4.2.8 Cycle Check (Directed Graph)

One graph property that sometimes tested in programming contest is whether the graph
has a cycle (cyclic) or not (acyclic). An undirected graph is by nature a cyclic graph as
all its bidirectional edges form trivial cycles. A directed graph that happens to have two
directed edges between the same pair of vertices also has this trivial cycle problem. Hence
cycle check is usually defined as finding a non-trivial cycle of length 3 edges (or more) in
a given directed graph. A Directed Acyclic Graph (DAG) is a special graph that opens up
many e�cient topological sort-based solutions (see Section 4.2.6).

Running DFS on a connected/disconnected graph generates a DFS spanning tree/forest9,
respectively. With the help of one more vertex state: EXPLORED (that means visited but not
yet completed) on top of VISITED (visited and completed), we can use this DFS spanning
tree/forest to classify graph edges into three types:

1. Tree edge: This is an edge that is part of DFS spanning tree.
We can detect this when DFS moves from vertex u currently with state: EXPLORED
to another vertex v with state: UNVISITED. In fact, this is the necessary condition for
DFS to advance its traversal.

2. Back/Bidirectional edge: This is an edge that is either part of a non-trivial cycle
(back edge) or a trivial cycle (bidirectional edge).
We can detect this when DFS moves from vertex u currently with state: EXPLORED to
another vertex v with state: EXPLORED too, which implies that vertex v is an ancestor
of vertex u in the DFS spanning tree. If this ancestor v of u is the direct parent of u
(this information is stored in vi dfs parent), then this cycle is actually a trivial cycle
caused by a bidirectional edge. Otherwise, this cycle is a non-trivial cycle.
Finding at least one back edge (cycle) in a directed graph is sometimes tested in
programming contest.

3. Forward/Cross edges (rarely used in programming contest).
We can detect this when DFS moves from vertex u currently with state: EXPLORED to
another vertex v with state: VISITED.

Figure 4.4: dfs(0) when Run on the First CC of Sample Graph in Figure 4.1

Figure 4.4—left and middle shows a frozen animation of calling dfs(0) only (that does not
able to reach vertices {5, 6, 7, 8}) on the sample graph in Figure 4.1. We can see that
0 ! 1 ! 2 ! 3 ! 1 is a (true) cycle and we classify edge (3 ! 1) as a back edge, whereas
many other edges, e.g., 0 ! 1 ! 0 is not a cycle but it is just a bi-directional edge (0-1).

9A spanning tree of a connected graph G is a tree that spans (covers) all vertices of G but only using
a subset of the edges of G. A disconnected graph G has several connected components. Each component
has its own spanning subtree(s). All spanning subtrees of G, one from each component, form what we call
a spanning forest.
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In Figure 4.4—right, we see that when later DFS backtracks to vertex 1 and explore edge
1 ! 3, it will find a forward/cross edge. The code for this DFS variant is as follows:

void cycleCheck(int u) { // check edge properties
dfs_num[u] = EXPLORED; // color u as EXPLORED
for (auto &[v, w] : AL[u]) { // C++17 style, w ignored

printf("Edge (%d, %d) is a ", u, v);
if (dfs_num[v] == UNVISITED) { // EXPLORED->UNVISITED

printf("Tree Edge\n");
dfs_parent[v] = u; // a tree edge u->v
cycleCheck(v);

}
else if (dfs_num[v] == EXPLORED) { // EXPLORED->EXPLORED

if (v == dfs_parent[u]) // differentiate them
printf("Bidirectional Edge\n"); // a trivial cycle

else
printf("Back Edge (Cycle)\n"); // a non trivial cycle

}
else if (dfs_num[v] == VISITED) // EXPLORED->VISITED

printf("Forward/Cross Edge\n"); // rare application
}
dfs_num[u] = VISITED; // color u as VISITED/DONE

}

// inside int main()
dfs_num.assign(V, UNVISITED);
dfs_parent.assign(V, -1);
for (int u = 0; u < V; ++u)

if (dfs_num[u] == UNVISITED)
cycleCheck(u);

For the sample undirected graph in Figure 4.1, the analysis is like this: Edges (0, 1), (1, 2),
(2, 3), (3, 4), (6, 7), and (6, 8) are bidirectional edges. Edge 3 ! 1 is a back edge (part of a
cycle), and edge 1 ! 3 is a forward/cross edge.

For the sample directed graph in Figure 4.7, the analysis is like this: Edge 2 ! 1 and
6 ! 4 are back edges (part of a cycle).

Source code: ch4/traversal/cyclecheck.cpp|java|py

Exercise 4.2.8.1: What is the time complexity of cycleCheck routine above? As it is
another modification of O(V + E) DFS, is it O(V + E) too or is it faster than that?

Exercise 4.2.8.2: Give a small directed graph test case so that a cycleCheck routine that
only uses two vertex states (UNVISITED versus VISITED) will accidentally classify some graph
to have a non-trivial cycle (has a back edge) while actually the graph is acyclic.

Exercise 4.2.8.3*: The cycleCheck routine above is a DFS modification. Can we use a
BFS (modification) to do the same for an undirected graph? Or for a directed graph?
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4.2.9 Finding Articulation Points and Bridges (Undirected Graph)

Problem: Given a road map (an undirected graph) with sabotage costs associated to all
intersections (vertices) and roads (edges), sabotage either a single intersection or a single
road such that the road network breaks down (disconnected) and do so in the least cost way.
This is a problem of finding the least cost Articulation Point (intersection) or the least cost
Bridge (road) in an undirected graph (road map).

An ‘Articulation Point’ is defined as a vertex in a graph G whose removal (all edges
incident to this vertex are also removed) disconnects G. A graph without any articulation
point is called ‘Biconnected’. Similarly, a ‘Bridge’ is defined as an edge in a graph G whose
removal disconnects G. These two problems are usually defined for undirected graphs (they
are more challenging for directed graphs and require another algorithm to solve, see [32]).

Näıve Algorithm

A näıve algorithm to find articulation points is as follows (can be tweaked to find bridges):

1. Run O(V + E) DFS (or BFS) to count number of Connected Components (CCs) of
the original graph. Usually, the input is a connected graph, so this check will usually
give us one Connected Component.

2. For each vertex v 2 V // O(V ⇥ (V + E)) = O(V 2 + V E)

(a) (Virtually) cut (remove) vertex v and its incident edges,

(b) Run O(V + E) DFS (or BFS) and see if the number of CCs increases,

(c) If yes, v is an articulation point/cut vertex; Restore v and its incident edges.

This näıve algorithm calls DFS (or BFS) O(V ) times, thus it runs in O(V ⇥ (V + E)) =
O(V 2 + V E). But this is not the best algorithm as we can actually just run the O(V + E)
DFS once to identify all the articulation points and bridges. This DFS variant, due to John
Edward Hopcroft and Robert Endre Tarjan (see [55] and problem 22.2 in [5]), is just another
extension of the previous DFS code shown earlier.

Two More DFS Attributes: dfs num and dfs low

We now maintain two more numbers when running DFS: dfs_num(u) and dfs_low(u).
Now, dfs_num(u) stores the iteration counter (starting from 0) when the vertex u is visited
for the first time (not just for distinguishing UNVISITED versus EXPLORED/VISITED).

Let R be the set of vertices that are in the DFS spanning subtree rooted at u (including u
itself). The other number dfs_low(u) stores the lowest dfs_num in R or the lowest dfs_num
of a vertex not in R that is reachable by a back edge (see Section 4.2.8) from a vertex in
R. Initially is dfs_low(u) = dfs_num(u) when vertex u is visited for the first time. Then,
dfs_low(u) can only be made smaller if DFS encounters a back edge that connects a vertex
u in R to another vertex v not in R that has lower dfs_num(v). This update may a↵ect
other ancestor vertices of u too. Note that we do not update dfs_low(u) if edge (u, v) is a
bidirectional edge.

See Figure 4.5 for clarity. In the figure, the dfs_num and dfs_low values are written as
dfs_num,dfs_low under each vertex. There are two undirected graphs: Left and Right side.
In both graphs, we run the DFS variant from vertex 0.

Suppose for the graph in Figure 4.5—left side, the sequence of visitation is 0 (at iteration
0) ! 1 (1) ! 2 (2) (backtrack to 1) ! 4 (3) ! 3 (4) (backtrack to 4) ! 5 (5). As there is
no back edge in this graph, all dfs_low = dfs_num at the end.
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Figure 4.5: Two More DFS Attributes: dfs num and dfs low

Suppose for the graph in Figure 4.5—right side, the sequence of visitation is 0 (at iteration
0) ! 1 (1) ! 2 (2) (backtrack to 1) ! 3 (3) (backtrack to 1) ! 4 (4) ! 5 (5). At this
point in the DFS spanning tree, there is an important back edge that forms a cycle, i.e.,
edge 5 ! 1 that is part of non-trivial cycle 1 ! 4 ! 5 ! 1. This causes vertices 1 (itself),
4 (indirectly), and 5 (the vertex that discovers back edge 5 ! 1) to all able to reach vertex
1 (with dfs_num 1). Thus dfs_low of {1, 4, 5} are all 1.

Using dfs num and dfs low Information

When we are in a vertex u with v as its neighbor and dfs_low(v) � dfs_num(u), then u is
clearly an articulation vertex. This is because the fact that dfs_low(v) is not smaller than
dfs_num(u) implies that there is no back edge from a vertex in the subtree rooted at v that
can reach another vertex w with a lower dfs_num(w) than dfs_num(u). A vertex w with
lower dfs_num(w) than vertex u with dfs_num(u) implies that w is the ancestor of u in the
DFS spanning tree. This means that to reach the ancestor(s) of u from v, one must pass
through a critical, articulation point vertex u. Therefore, removing vertex u will disconnect
the graph, i.e., disconnects vertex u with vertex v.

However, there is one special case: the root of the DFS spanning tree (the vertex chosen
as the start of DFS call) is an articulation point only if it has more than one children in the
DFS spanning tree (a trivial case that is not detected by this algorithm).

Figure 4.6: Finding Articulation Points with dfs num and dfs low

See Figure 4.6 for more details. This figure is the portrayal of the DFS spanning trees rooted
at vertex 0 of the original input graph in Figure 4.5. On the graph in Figure 4.6—left, vertices
1 and 4 are articulation points, because for example in edge 1 ! 2, we see that dfs_low(2)
� dfs_num(1) (vertex 2 can only reach ancestor of vertex 1 via articulation point vertex 1)
and similarly in edge 4 ! 5, we also see that dfs_low(5) � dfs_num(4).

On the graph in Figure 4.6—right, only vertex 1 is the articulation point, because for
example in edge 1 ! 5, dfs_low(5) � dfs_num(1). On the other hand, vertex 4 is not
an articulation point because when we examine edge 4 ! 5, we see that dfs_low(5) <
dfs_num(4), or in another words: vertex 5 can reach the ancestor of vertex 4 (i.e., vertex 1)
not via vertex 4 but via another path (e.g., path 5 ! 1).
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The process to find bridges is similar. When dfs_low(v) > dfs_num(u), then edge (u, v) is
a bridge (notice that we remove the equality test ‘=’ for finding bridges). In Figure 4.5—left,
all edges are bridges as it is a tree. In Figure 4.5—right, almost all edges are bridges except
edges (1, 4), (4, 5), and (5, 1) (they actually form a cycle). This is because—for example—for
edge (1, 4), we have dfs_low(4)  dfs_num(1), i.e., even if this edge (1, 4) is removed, we
know for sure that vertex 4 can still reach vertex 1 via another path as dfs_low(4) = 1
(that other path is actually path 4 ! 5 ! 1). The code is shown below:

vi dfs_num, dfs_low, dfs_parent, articulation_vertex;
int dfsNumberCounter, dfsRoot, rootChildren;

void articulationPointAndBridge(int u) {
dfs_num[u] = dfsNumberCounter++;
dfs_low[u] = dfs_num[u]; // dfs_low[u]<=dfs_num[u]
for (auto &[v, w] : AL[u]) {

if (dfs_num[v] == UNVISITED) { // a tree edge
dfs_parent[v] = u;
if (u == dfsRoot) ++rootChildren; // special case, root

articulationPointAndBridge(v);

if (dfs_low[v] >= dfs_num[u]) // for articulation point
articulation_vertex[u] = 1; // store this info first

if (dfs_low[v] > dfs_num[u]) // for bridge
printf(" (%d, %d) is a bridge\n", u, v);

dfs_low[u] = min(dfs_low[u], dfs_low[v]); // subtree, always update
}
else if (v != dfs_parent[u]) // if a non-trivial cycle

dfs_low[u] = min(dfs_low[u], dfs_num[v]); // then can update
}

}

// inside int main()
dfs_num.assign(V, UNVISITED); dfs_low.assign(V, 0);
dfs_parent.assign(V, -1); articulation_vertex.assign(V, 0);
dfsNumberCounter = 0;
printf("Bridges:\n");
for (int u = 0; u < V; ++u)

if (dfs_num[u] == UNVISITED) {
dfsRoot = u; rootChildren = 0;
articulationPointAndBridge(u);
articulation_vertex[dfsRoot] = (rootChildren > 1); // special case

}

printf("Articulation Points:\n");
for (int u = 0; u < V; ++u)

if (articulation_vertex[u])
printf(" Vertex %d\n", u);

Source code: ch4/traversal/articulation.cpp|java|py
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4.2.10 Finding Strongly Connected Components (Directed Graph)

Yet another application of DFS is to find Strongly Connected Components (SCCs) in a
directed graph, e.g., UVa 11838 - Come and Go. This is a di↵erent problem to finding
Connected Components (CCs) in an undirected graph. In Figure 4.7, we have a directed
graph. Although this graph looks like it has one CC (running dfs(0) does reach all vertices
in the graph), it is actually not an SCC (for example, vertex 1 cannot go to vertex 0). In
directed graphs, we are more interested with the notion of SCC instead of the more basic
CC. An SCC is defined as such: if we pick any pair of vertices u and v in the SCC, we can
find a path from u to v and vice versa. There are actually three SCCs in Figure 4.7, as
highlighted with the three boxes: {0}, {1, 2, 3}, and {4, 5, 6, 7}. Note that if these SCCs
are contracted (replaced by larger vertices), they form a DAG (see Book 2).

There are at least two known algorithms to find SCCs: Kosaraju’s—explained in [5] and
Tarjan’s algorithm [55]. In this section, we explore both versions. Kosaraju’s algorithm is
easier to understand but Tarjan’s version extends naturally from our previous discussion of
finding Articulation Points and Bridges—also due to Tarjan.

Kosaraju’s Algorithm

To understand how Kosaraju’s algorithm works, we need to do two observations.
First, running dfs(u) on a directed graph where u is part of its “smallest SCC” (SCC

where all outgoing edges of the vertices in the SCC only point to another member of the SCC
itself) will only visit vertices in that smallest SCC. For example in Figure 4.7—left, if we run
dfs(4) (or dfs(5), dfs(6), or dfs(7)), we can only visit vertices {4, 5, 6, 7}. Notice that
if we run dfs(3) for example, we will be able to reach vertices {1, 2, 3} as well as vertices
{4, 5, 6, 7} due to presence of edge 3 ! 4 that can cause ‘leakage’. The question is how to
find the “smallest SCC”?

Second, the SCCs of the original directed graph and the SCCs of the transposed graph
are identical.

Kosaraju’s algorithm combine the two ideas. Running DFS on the original directed graph,
we can record the explored vertices in decreasing finishing order (or post-order, similar as in
finding topological sort10 in Section 4.2.6). For example in Figure 4.7—left, the decreasing
finishing order of the 8 vertices is {0, 1, 3, 4, 5, 7, 6, 2}. In turns out that on the transposed
graph, these ordering can help us identify the “smallest SCC” (read [5] for the details).

Figure 4.7: Execution of Two Passes Kosaraju’s Algorithm

Running dfs(0) on the transposed graph (see Figure 4.7—right), we immediately get stuck
as there is no outgoing edge of vertex 0. Hence we find our first (and smallest) SCC. If we
then proceed with dfs(1), we have the next smallest SCC {1, 2, 3} (as now DFS will not go
via edge 1 ! 0 as vertex 0 has been visited, i.e., we have “virtually removed” the first SCC).
We skip dfs(3) as it will not do anything. Finally, if we then proceed with dfs(4), we have
the next (and final) smallest SCC {4, 5, 6, 7} (as now DFS will not go via edge 4 ! 3 as
vertex 3 has been visited, i.e., we again have “virtually removed” the second SCC).

10But this may not be a valid topological sort as the original directed graph will very likely be cyclic.
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These two passes of DFS is enough to find the SCCs of the original directed graph. The
simple C++ implementation of Kosaraju’s algorithm is shown below.

void Kosaraju(int u, int pass) { // pass = 1 (original), 2 (transpose)
dfs_num[u] = 1;
vii &neighbor = (pass == 1) ? AL[u] : AL_T[u]; // by ref to avoid copying
for (auto &[v, w] : neighbor) // C++17 style, w ignored

if (dfs_num[v] == UNVISITED)
Kosaraju(v, pass);

S.push_back(u); // similar to toposort
}

// inside int main()
S.clear(); // first pass
dfs_num.assign(N, UNVISITED); // record the post-order
for (int u = 0; u < N; ++u) // of the original graph

if (dfs_num[u] == UNVISITED)
Kosaraju(u, 1);

numSCC = 0; // second pass
dfs_num.assign(N, UNVISITED); // explore the SCCs
for (int i = N-1; i >= 0; --i) // based on the

if (dfs_num[S[i]] == UNVISITED) // first pass result
++numSCC, Kosaraju(S[i], 2); // on transposed graph

printf("There are %d SCCs\n", numSCC);

Tarjan’s Algorithm

Figure 4.8: Left: Directed Graph; Middle+Right: DFS Spanning Tree Snapshots

The basic idea of Tarjan’s algorithm is that SCCs form subtrees in the DFS spanning tree
(compare the original directed graph and the two snapshots of its DFS spanning trees in
Figure 4.8). On top of computing dfs_num(u) and dfs_low(u) for each vertex, we also
append vertex u to the back of a stack S (here the stack is implemented with a vector)
and keep track of the vertices that are currently explored via vi visited. The condition
to update dfs_low(u) is slightly di↵erent from the previous DFS algorithm for finding
articulation points and bridges. Here, only vertices that currently have visited flag turned
on (part of the current SCC) that can update dfs_low(u). Now, if we have vertex u in
this DFS spanning tree with dfs_low(u) = dfs_num(u), we can conclude that u is the root
(start) of an SCC (observe vertex 0, 1, and 4) in Figure 4.8 and the members of those SCCs
are identified by popping the current content of stack S until we reach vertex u again.
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In Figure 4.8—middle, the content of S is {0, 1, 3, 2, 4, 5, 7, 6} when vertex 4 is found as
root of an SCC (dfs low(4) = dfs num(4) = 4), so we pop elements in S one by one until
we reach vertex 4 and we have this SCC: {4, 5, 6, 7}. Next, in Figure 4.8—right, the content
of S is {0, 1, 3, 2} when vertex 1 is identified as the root of another SCC (dfs low(1) =
dfs num(1) = 1), so we pop elements in S one by one until we reach vertex 1 and we have
SCC: {1, 2, 3}. Finally, we have the last SCC with one member only: {0}.

The C++ implementation of Tarjan’s algorithm is shown below. This code is basically
a tweak of the standard DFS code. The recursive part is similar to standard DFS and the
SCC reporting part will run in amortized O(V ) times, as each vertex will only belong to one
SCC and thus reported only once. In overall, this algorithm still runs in O(V + E).

int dfsNumberCounter, numSCC; // global variables
vi dfs_num, dfs_low, visited;
stack<int> St;

void tarjanSCC(int u) {
dfs_low[u] = dfs_num[u] = dfsNumberCounter; // dfs_low[u]<=dfs_num[u]
dfsNumberCounter++; // increase counter
St.push(u); // remember the order
visited[u] = 1;
for (auto &[v, w] : AL[u]) {

if (dfs_num[v] == UNVISITED)
tarjanSCC(v);

if (visited[v]) // condition for update
dfs_low[u] = min(dfs_low[u], dfs_low[v]);

}
if (dfs_low[u] == dfs_num[u]) { // a root/start of an SCC

++numSCC; // when recursion unwinds
while (1) {

int v = St.top(); St.pop();
visited[v] = 0;
if (u == v) break;

}
}

}

// inside int main()
dfs_num.assign(V, UNVISITED); dfs_low.assign(V, 0); visited.assign(V, 0);
while (!St.empty()) St.pop();
dfsNumberCounter = numSCC = 0;
for (int u = 0; u < V; ++u)

if (dfs_num[u] == UNVISITED)
tarjanSCC(u);

Source code: ch4/traversal/UVa11838.cpp|java|py|ml

Exercise 4.2.10.1: Prove (or disprove) this statement: “If two vertices are in the same
SCC, then there is no path between them that ever leaves the SCC”!
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4.2.11 Graph Traversal in Programming Contests

It is remarkable that the simple DFS and BFS traversal algorithms have so many interesting
variants that can be used to solve various graph problems on top of their basic form for
traversing a graph. In IOI (as per latest IOI syllabus in year 2020 [16]) and ICPC, any of
these variants can appear.

Using DFS (or BFS) to find connected components in an undirected graph is rarely asked
per se although its variant: flood fill, is one of the most frequent problem type in the past.
However, we feel that the number of (new) flood fill problems is getting smaller.

Topological sort is rarely used per se, but it is a useful pre-processing step for ‘DP on
(implicit) DAG’, see Section 4.6.1. The simplest version of topological sort code is very easy
to memorize as it is just a simple DFS variant. The alternative Kahn’s algorithm (that only
process vertices with 0-incoming degrees) is also equally simple and may be important for
some topological sort applications.

E�cient O(V + E) solutions for Bipartite Graph check, Cycle (back edge) check, and
finding articulation points/bridges are good to know but as seen in the UVa and Kattis
online judge (and recent ICPC regionals in Asia), not many problems use them now.

The knowledge of Kosaraju’s or Tarjan’s SCC algorithm may come in handy to solve
modern problems where one of its sub-problem involves directed graphs that ‘requires trans-
formation’ to DAG by contracting cycles—see the details in Book 2. The library code shown
in this book may be something that you should bring into a programming contest that allows
hard copy printed library code like ICPC. Note that Kosaraju’s algorithm requires graph
transpose routine (or build two graph data structures upfront) that is mentioned briefly in
Section 2.4.1 and it needs two passes through the graph data structure whereas Tarjan’s
algorithm does not need graph transpose routine and it only needs only one pass. However,
we reckon that these two SCC finding algorithms are equally good and can be used to solve
many (if not all) SCC problems listed in this book.

Other graph traversal problems that do not fit into categories above are currently listed
under Really Ad Hoc category. Some of them are interestingly very creative.

Although many of the graph problems discussed in this section can be solved by either
DFS or BFS. Personally, we feel that many of them are easier to be solved using the recursive
and more memory friendly DFS. We do not normally use BFS for pure graph traversal
problems but we will use it to solve the Single-Source Shortest Paths problems on unweighted
graph (see Section 4.4.2). Table 4.2 shows important comparison between these two popular
graph traversal algorithms.

O(V + E) DFS (Depth-first) O(V + E) BFS (Breadth-first)
Pros Usually use less memory Can solve SSSP

Can find cut vertices, bridges, SCC on unweighted graphs
Cons Cannot solve SSSP Usually use more memory

on unweighted graphs (bad for large graph)
Code Slightly easier to code Just a bit longer to code

Table 4.2: Graph Traversal Algorithm Decision Table

We have provided the animation of DFS/BFS algorithm and (many of) their variants in
VisuAlgo. Use it to further strengthen your understanding of these algorithms by providing
your own input graph and/or source vertex and see the graph algorithm being animated live
on that particular input graph. The URL is shown below.

Visualization: https://visualgo.net/en/dfsbfs

211



4.2. GRAPH TRAVERSAL c� Steven, Felix, Suhendry

Programming Exercises related to Graph Traversal:

a. Finding Connected Components

1. Entry Level: Kattis - wheresmyinternet * (check connectivity to vertex 1)

2. UVa 00459 - Graph Connectivity * (also solvable with UFDS)

3. UVa 11749 - Poor Trade Advisor * (find the largest CC with highest
average PPA; also solvable with UFDS)

4. UVa 11906 - Knight in a War Grid * (DFS/BFS for reachability, several
tricky cases; be careful when M = 0, N = 0, or = N)

5. Kattis - dominoes2 * (unlike UVa 11504, we treat SCCs as CCs; also available
at UVa 11518 - Dominos 2)

6. Kattis - reachableroads * (report number of CC-1)

7. Kattis - terraces * (group cells with similar height together; if it cannot flow
to any other component with lower height, add this CC-size to answer)

Extra UVa: 00260, 00280, 10687, 11841, 11902.

Extra Kattis: cartrouble, daceydice, foldingacube, moneymatters, pearwise,
securitybadge.

b. Flood Fill, Easier

1. Entry Level: UVa 00572 - Oil Deposits * (count number of CCs)

2. UVa 00352 - The Seasonal War * (count number of CCs; see UVa 00572)

3. UVa 00871 - Counting Cells in a Blob * (find the largest CC size)

4. UVa 11953 - Battleships * (interesting twist of flood fill problem)

5. Kattis - amoebas * (easy floodfill)

6. Kattis - countingstars * (basic flood fill problem; count CCs)

7. Kattis - gold * (flood fill with extra blocking constraint; also available at
UVa 11561 - Getting Gold)

Extra UVa: 00469, 00657, 00722, 10336, 11244, 11470.

Extra Kattis: floodit.

c. Flood Fill, Harder

1. Entry Level: UVa 11094 - Continents * (tricky flood fill; scrolling)

2. UVa 00852 - Deciding victory in Go * (interesting board game ‘Go’)

3. UVa 01103 - Ancient Messages * (LA 5130 - WorldFinals Orlando11;
major hint: each hieroglyph has unique number of white CCs)

4. UVa 11585 - Nurikabe * (polynomial-time verifier for an NP-complete
puzzle Nurikabe; this verifier requires clever usage of flood fill algorithm)

5. Kattis - 10kindsofpeople * (intelligent flood fill; just run once to avoid TLE
as there are many queries)

6. Kattis - coast * (intelligent flood fill; give sentinel to represent sea; floodfill
from sea; count crossings to lands)

7. Kattis - islands3 * (optimistic flood fill; assume all Cs are Ls)

Extra UVa: 00601, 00705, 00758, 00776, 00782, 00784, 00785, 10592, 10707,
10946, 11110.

Extra Kattis: island, vindiagrams.
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d. Topological Sort

1. Entry Level: Kattis - builddeps * (the graph is acyclic; toposort with DFS
from the changed file)

2. UVa 00200 - Rare Order * (toposort)

3. UVa 00872 - Ordering * (similar to UVa 00124; use backtracking)

4. UVa 11060 - Beverages * (Kahn’s algorithm—modified BFS toposort)

5. Kattis - brexit * (toposort; chain reaction; modified Kahn’s algorithm)

6. Kattis - conservation * (modified Kahn’s algorithm; greedily process all steps
in a certain lab before alternating to the other lab)

7. Kattis - pickupsticks * (cycle check + toposort if DAG; also available at item
UVa 11686 - Pick up sticks)

Extra UVa: 00124, 10305.

Extra Kattis: brexitnegotiations, collapse, digicomp2, easyascab, grapevine,
managingpackaging.

Also see: DP on (implicit) DAG problems (see Section 4.6.1).

e. Bipartite or Cycle Check

1. Entry Level: Kattis - runningmom * (find a cycle in a directed graph)

2. UVa 10004 - Bicoloring * (Bipartite Graph check)

3. UVa 10116 - Robot Motion * (traversal on implicit graph; cycle check)

4. UVa 10505 - Montesco vs Capuleto * (bipartite; take max(left, right))

5. Kattis - hoppers * (the answer is number of CC-1 if there is at least one
bipartite component in the graph; or number of CC otherwise)

6. Kattis - molekule * (undirected tree is also Bipartite/bi-colorable; bi-color it
with 0 and 1; direct all edges from 0 to 1 (or vice versa))

7. Kattis - torn2pieces * (construct graph from strings; traversal from source
to target; reachability check; print path)

Extra UVa: 00840, 10510, 11080, 11396,

Extra Kattis: amanda, ballsandneedles, breakingbad, familydag, pubs.

f. Finding Articulation Points/Bridges

1. Entry Level: UVa 00315 - Network * (finding articulation points)

2. UVa 10765 - Doves and Bombs * (finding articulation points)

3. UVa 12363 - Hedge Mazes * (LA 5796 - Latin America; transform input
to graph of its bridges; see if b is reachable from a with only the bridges)

4. UVa 12783 - Weak Links * (finding bridges)

5. Kattis - birthday * (check if the input graph contains any bridge; N is small
though so weaker solution can still be accepted)

6. Kattis - caveexploration * (find size of bi-connected components that contains
vertex 0; identify the bridges)

7. Kattis - intercept * (Articulation Points in SSSP Spanning DAG; clever mod-
ification of Dijkstra’s)

Extra UVa: 00610, 00796, 10199.

Extra Kattis: kingpinescape.
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g. Finding Strongly Connected Components

1. Entry Level: UVa 11838 - Come and Go * (see if input graph is an SCC)

2. UVa 00247 - Calling Circles * (SCC + printing solution)

3. UVa 11709 - Trust Groups * (find the number of SCCs)

4. UVa 11770 - Lighting Away * (similar to UVa 11504)

5. Kattis - cantinaofbabel * (build directed graph ‘can speak’; compute the
largest SCC of ‘can speak’; keep this largest SCC)

6. Kattis - dominos * (count the number of SCCs without incoming edge from
a vertex outside that SCC; also available at UVa 11504 - Dominos)

7. Kattis - equivalences * (contract input directed graph into SCCs; count SCCs
that have in-/out-degrees = 0; report the max)

Extra UVa: 01229.

Extra Kattis: loopycabdrivers, reversingroads, test2.

h. Ad Hoc Graph Traversal

1. Entry Level: UVa 12376 - As Long as I Learn, I Live * (simulated
greedy traversal on DAG)

2. UVa 00824 - Coast Tracker * (traversal on implicit graph)

3. UVa 11831 - Sticker Collector ... * (traversal on implicit graph)

4. UVa 12442 - Forwarding Emails * (modified DFS; special graph)

5. Kattis - faultyrobot * (interesting graph traversal variant)

6. Kattis - promotions * (modified DFS; special graph; DAG; also available at
UVa 13015 - Promotions)

7. Kattis - succession * ((upwards) traversal of family DAG; use unordered maps;
make the founder has very large starting blood to avoid fraction)

Extra UVa: 00118, 00168, 00173, 00318, 00614, 00781, 10113, 10377, 12582,
12648, 13038.

Extra Kattis: ads, brickwall, droppingdirections, hogwarts2, jetpack, kingofthe-
waves, silueta.

Others: IOI 2011 - Tropical Garden (graph traversal; DFS; involving cycle).

Profile of Algorithm Inventor

Edward Forrest Moore (1925-2003) was an American professor of Mathematics and Com-
puter Science. He (re-)invented and popularized the Breadth First Search (BFS) algorithm
in his paper [41]. In the same work, he also improved the Bellman-Ford algorithm into the
faster Bellman-Ford-Moore algorithm.
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4.3 Minimum Spanning Tree (MST)

4.3.1 Overview and Motivation

Problem: Given a connected, undirected, and weighted graph G = (V,E) (see Figure 4.9—
left), select a subset of edges E 0 ✓ E such that the graph G0 = (V,E 0) is (still) connected
and the total weight of the selected edges E 0 is minimal!

Figure 4.9: Example of an MST Problem

To satisfy the connectivity criteria, we need at least V -1 edges that form a tree and this tree
must span (cover) all V 2 G—the spanning tree! There can be several valid spanning trees
in G, i.e., see Figure 4.9—middle and right, including the DFS and BFS spanning trees that
we have learned in previous Section 4.2 or even the SSSP spanning trees that we will learn
later in Section 4.4. Among these possible spanning trees11 of G, there are some (at least
one) that satisfy the minimal weight criteria.

This problem is called the Minimum Spanning Tree (MST) problem and has many prac-
tical applications. For example, we can model a problem of building road network in remote
villages as an MST problem. The vertices are the villages. The edges are the potential roads
that may be built between those villages. The cost of building a road that connects village
i and j is the weight of edge (i, j). The MST of this graph is therefore the minimum cost
road network that connects all these villages. UVa [44] and Kattis [34] online judges have
some basic MST problems like this, e.g., UVa 00908, 01174, 01208, 10034, 11631, Kattis -
islandhopping, minspantree, etc.

This MST problem can be solved with several well-known algorithms, i.e., Kruskal’s
and Prim’s algorithms. Both are Greedy algorithms and explained in many CS textbooks
[5, 51, 38, 53, 40, 1, 35, 6]. The MST weight produced by these two algorithms is unique,
but there can be more than one spanning tree with the same MST weight.

4.3.2 Kruskal’s Algorithm

Joseph Bernard Kruskal Jr.’s algorithm first sorts E edges based on non-decreasing weight.
This can be easily done by storing the edges in an Edge List data structure (see Section
2.4.1) and then sort the edges based on non-decreasing weight. Then, Kruskal’s algorithm
greedily tries to add each edge into the MST as long as such addition does not form a cycle.
This cycle check can be done easily using the lightweight Union-Find Disjoint Sets (UFDS)
data structure discussed in Section 2.4.2. Conceptually, Kruskal’s algorithm maintains forest
of (small) trees (possibly disjoint) that gradually merging into one MST.

11Interested readers should read up the advanced mathematics topic of ‘Kirchho↵’s Matrix Tree Theorem’
on how to count the number of spanning trees in a graph in polynomial time.
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The code is short (because we have separated the Union-Find Disjoint Sets implementa-
tion code in a separate class). The overall runtime of this algorithm is O(sorting + trying to
add each edge ⇥ cost of Union-Find operations) = O(E logE +E ⇥ (⇡ 1)) = O(E logE) =
O(E log V 2) = O(2⇥ E log V ) = O(E log V ).

// inside int main(), our own UFDS code has been included
int V, E; scanf("%d %d", &V, &E);
vector<iii> EL(E);
for (int i = 0; i < E; ++i) {

int u, v, w; scanf("%d %d %d", &u, &v, &w); // read as (u, v, w)
EL[i] = {w, u, v}; // reorder as (w, u, v)

}
sort(EL.begin(), EL.end()); // sort by w, O(E log E)
// note: std::tuple has built-in comparison function

int mst_cost = 0, num_taken = 0; // no edge has been taken
UnionFind UF(V); // all V are disjoint sets
// note: the runtime cost of UFDS is very light
for (auto &[w, u, v] : EL) { // C++17 style

if (UF.isSameSet(u, v)) continue; // already in the same CC
mst_cost += w; // add w of this edge
UF.unionSet(u, v); // link them
++num_taken; // 1 more edge is taken
if (num_taken == V-1) break; // optimization

}
// note: the number of disjoint sets must eventually be 1 for a valid MST
printf("MST cost = %d (Kruskal’s)\n", mst_cost);

Source code: ch4/mst/kruskal.cpp|java|py|ml

Figure 4.10 shows partial execution of Kruskal’s algorithm on the graph in Figure 4.9—left.
Notice that the final MST is not unique. In Figure 4.10–right, we can also have another
MST with the same minimum cost of 18 by replacing edge 0-1 with edge 0-2.

Figure 4.10: Animation of Kruskal’s Algorithm for an MST Problem

Exercise 4.3.2.1: In the code above, we stop Kruskal’s as soon as it has taken V -1 edges
into the MST. Why this early termination does not change the correctness of Kruskal’s
algorithm? Is there other ways to implement the same optimization using UFDS?
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4.3.3 Prim’s Algorithm

Robert Clay Prim’s (or Vojtêch Jarńık’s) algorithm first takes a starting vertex (for simplic-
ity, we take vertex 0), flags it as ‘taken’, and enqueues a pair of information into a priority
queue: the weight w and the other end point u of the edge (0, u) that is not taken yet. These
pairs are dynamically sorted in the priority queue based on increasing weight, and if tie, by
increasing vertex number. Then, Prim’s algorithm greedily selects the pair (w, u) in front of
the priority queue—which has the minimum weight w—if the end point of this edge—which
is u—has not been taken before. This is to prevent cycle. If this pair (w, u) is valid, then
the weight w is added into the MST cost, u is marked as taken, and pair (w0, v) of each edge
(u, v) with weight w0 that is incident to u is enqueued into the priority queue if v has not
been taken before. This process is repeated until the priority queue is empty. Conceptually,
Prim’s algorithm grows an MST (always a single component/tree) from the starting vertex
until it spans the entire graph.

The code length is about the same as Kruskal’s and also runs in O(process each edge
once ⇥ cost of enqueue/dequeue) = O(E ⇥ logE) = O(E log V ).

vector<vii> AL; // the graph stored in AL
vi taken; // to avoid cycle
priority_queue<ii> pq; // to select shorter edges
// C++ STL priority_queue is a max heap, we use -ve sign to reverse order

void process(int u) { // set u as taken and enqueue neighbors of u
taken[u] = 1;
for (auto &[v, w] : AL[u])

if (!taken[v])
pq.emplace(-w, -v); // sort by non-dec weight

} // then by inc id

// inside int main() --- assume the graph is stored in AL, pq is empty
int V, E; scanf("%d %d", &V, &E);
AL.assign(V, vii());
for (int i = 0; i < E; ++i) {

int u, v, w; scanf("%d %d %d", &u, &v, &w); // read as (u, v, w)
AL[u].emplace_back(v, w);
AL[v].emplace_back(u, w);

}
taken.assign(V, 0); // no vertex is taken
process(0); // take+process vertex 0
int mst_cost = 0, num_taken = 0; // no edge has been taken
while (!pq.empty()) { // up to O(E)

auto [w, u] = pq.top(); pq.pop(); // C++17 style
w = -w; u = -u; // negate to reverse order
if (taken[u]) continue; // already taken, skipped
mst_cost += w; // add w of this edge
process(u); // take+process vertex u
++num_taken; // 1 more edge is taken
if (num_taken == V-1) break; // optimization

}
printf("MST cost = %d (Prim’s)\n", mst_cost);
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Figure 4.11: Animation of Prim’s Algorithm for the same graph as in Figure 4.9—left

Figure 4.11 shows partial execution of Prim’s algorithm on the same graph shown in Figure
4.9—left. Please compare it with Figure 4.10 to study the similarities and di↵erences between
Kruskal’s and Prim’s algorithms.

Understanding (partial) sequence of static pictures maybe a bit challenging. Therefore,
we have provided the animation of both Kruskal’s and Prim’s algorithms in VisuAlgo. Use
it to further strengthen your understanding of these two MST algorithms either by using our
sample graphs or by providing your own input graph (undirected weighted graph) and then
see the selected MST algorithm (either Kruskal’s or Prim’s) being animated live on that
particular input graph. The URL for the various MST algorithms and source code example
are shown below.

Visualization: https://visualgo.net/en/mst

Source code: ch4/mst/prim.cpp|java|py|ml

4.3.4 Other Applications

Variants of basic MST problem are interesting. In this section, we will explore some of them.

Figure 4.12: From left to right: MST, ‘Maximum’ ST, ‘Minimum’ SS, MS ‘Forest’

Maximum Spanning Tree

This is a simple variant where we want the Maximum instead of the Minimum Spanning
Tree (ST), e.g., UVa 01234 - RACING (note that this problem is written in such a way that
it does not look like an MST problem). In Figure 4.12—B, we see an example of a Maximum
ST. Compare it with the corresponding MST (Figure 4.12—A).

The solution for this variant is very simple. For Kruskal’s algorithm, we simply sort
the edges based on non-increasing weight. For Prim’s algorithm, we simply order the edges
using max priority queue. Or, we can insert negative edge weights to reverse the order.
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‘Minimum’ Spanning Subgraph

In this variant, we do not start with a clean slate. Some edges in the given graph have already
been fixed and must be taken as part of the solution, for example: UVa 10147 - Highways.
These default edges may form a non-tree in the first place. Our task is to continue selecting
the remaining edges (if necessary) to make the graph connected in the least cost way. The
resulting Spanning Subgraph may not be a tree and even if it is a tree, it may not be the
MST. That’s why we put the term ‘Minimum’ in quotes and use the term ‘subgraph’ rather
than ‘tree’. In Figure 4.12—C, we see an example when one edge (0, 1) is already fixed. The
actual MST is 10+13+17 = 40 which omits the edge (0, 1) (Figure 4.12—A). However, the
solution for this example must be (25)+10+13 = 48 which uses the edge (0, 1).

The solution for this variant is simple. For Kruskal’s algorithm, we first take into account
all the fixed edges and their costs. Then, we continue running Kruskal’s algorithm on the
remaining free edges until we have a spanning subgraph (or spanning tree). For Prim’s
algorithm, we give higher priorities to these fixed edges so that we will always take them
and their costs.

Minimum ‘Spanning Forest’

In this variant, we want to form a forest of K connected components (K subtrees) in the
least cost way where K is given beforehand in the problem description, for example: Kattis -
arcticnetwork (also available at UVa 10369 - Arctic Networks). In Figure 4.12—A, we observe
that the MST for this graph is 10+13+17 = 40. But if we are happy with a spanning forest
with 2 connected components, then the solution is just 10+13 = 23 on Figure 4.12—D. That
is, we omit the edge (2, 3) with weight 17 which will connect these two components into one
spanning tree if taken.

To get the minimum spanning forest is simple. For Kruskal’s algorithm, we run it as
per normal. However, as soon as the number of connected components equals to the desired
pre-determined number K, we can terminate Kruskal’s algorithm. For Prim’s algorithm, we
run it as per normal to get the MST and then delete the K-1 longest edges of the MST.

MiniMax (and MaxiMin)

Figure 4.13: Minimax (UVa 10048 [44])

The MiniMax path problem is a problem of finding the minimum of maximum edge weight
among all possible paths between two vertices i to j. The cost for a path from i to j is
determined by the maximum edge weight along this path. Among all these possible paths
from i to j, pick the one with the minimum max-edge-weight. The reverse problem of
MaxiMin is defined similarly.

The MiniMax path problem between vertex i and j can be solved by modeling it as an
MST problem. With a rationale that the problem prefers a path with low individual edge
weights even if the path is longer in terms of number of vertices/edges involved, then having
the MST (using Kruskal’s or Prim’s) of the given weighted graph is a correct step. The MST
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is connected thus ensuring a path between any pair of vertices. The MiniMax path solution
is thus the max edge weight along the unique path between vertex i and j in this MST.

The overall time complexity is O(build MST + one traversal on the resulting tree). As
E = V -1 in a tree, any traversal on tree is just O(V ). Thus the complexity of this approach
is O(E log V + V ) = O(E log V ).

Figure 4.13—left is a sample test case of UVa 10048 - Audiophobia. We have a graph
with 7 vertices and 9 edges. The 6 chosen edges of the MST are shown as thick lines in
Figure 4.13—right. Now, if we are asked to find the MiniMax path between vertex 0 and 6
in Figure 4.13—right, we simply traverse the MST from vertex 0 to 6. There will only be
one way, path: 0-2-5-3-6. The maximum edge weight found along the path is the required
MiniMax cost: 80 (due to edge 5-3).

Second Best Spanning Tree

Figure 4.14: Second Best ST (from UVa 10600 [44])

Sometimes, alternative solutions are important. In the context of finding the MST, we may
want not just the MST, but also the second best spanning tree, in case the MST is not
workable, for example: UVa 10600 - ACM contest and blackout. Figure 4.14 shows the MST
(left) and the second best ST (right). We can see that the second best ST is actually the
MST with just two edges di↵erence, i.e., one edge is taken out from the MST and another
chord12 edge is added into the MST. Here, edge 3-4 is taken out and edge 1-4 is added in.

Figure 4.15: Finding the Second Best Spanning Tree from the MST

12A chord edge is defined as an edge in graph G that is not selected in the MST of G.
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A solution for this variant is a modified Kruskal’s: sort the edges in O(E logE) = O(E log V ),
then find the MST using Kruskal’s in O(E). Next, for each edge in the MST (there are at
most V -1 edges in the MST), temporarily flag it so that it cannot be chosen, then try to
find the MST again in O(E) but now excluding that flagged edge. Note that we do not
have to re-sort the edges at this point. The best spanning tree found after this process is
the second best ST. Figure 4.15 shows this algorithm on the given graph. In overall, this
algorithm runs in O(sort the edges once + find the original MST + find the second best
ST) = O(E log V + E + V E) = O(V E).

Exercise 4.3.4.1*: There are better solutions for the Second Best ST problem shown above.
Solve this problem with a solution that is better than O(V E). Hints: You can use either
Lowest Common Ancestor (LCA) or Union-Find Disjoint-Sets.

Exercise 4.3.4.2*: Can we solve the Second Best ST problem using Prim’s algorithm?
What is the best time complexity of this approach? (compare with Exercise 4.3.4.1*).

Exercise 4.3.4.3*: Can you solve the MST problem faster than O(E log V ) if the input
graph is guaranteed to have edge weights that lie between a small integer range of [0..100]?
Is the potential speed-up significant?

Exercise 4.3.4.4*: Prove the correctness of both Kruskal’s and Prim’s algorithm!

4.3.5 MST in Programming Contests

To solve many MST problems in today’s programming contests, we can rely on either
Kruskal’s or Prim’s algorithm. There are a few other MST algorithms but we reckon that
they are not needed for Competitive Programming. Kruskal’s algorithm is the author’s pref-
erence as it is easy to understand and links well with the Union-Find Disjoint Sets data
structure (see Section 2.4.2) that is used to check for cycles. But Prim’s algorithm is also
simple and only needs built-in data structures (a Priority Queue and a Boolean array).

The default (and the most common) usage of Kruskal’s/Prim’s algorithm is to solve the
Minimum ST problem, but the easy variant of Maximum ST is also possible (UVa 01234,
10842). Note that most MST problems in programming contests only ask for the unique
MST cost and not the actual MST itself although it is easy to modify Kruskal’s/Prim’s
algorithm to do this. This is because there can be di↵erent MSTs with the same minimum
cost—usually it is too troublesome to write a special checker program to judge that.

The other MST variants discussed in this book like the ‘Minimum’ Spanning Subgraph
(UVa 10147, 10397), Minimum ‘Spanning Forest’ (UVa 01216, Kattis - arcticnetwork), Sec-
ond best ST (UVa 10462, 10600), MiniMax/MaxiMin (UVa 00534, 00544, 10048, 10099,
Kattis - millionairemadness, muddyhike) are actually rare.

Nowadays, the more general trend for MST problems is for the problem authors to write
the MST problem in such a way that it is not clear that the problem is actually an MST
problem (e.g., UVa 01013, 01216, 01234, 01235, 01265, 10457, Kattis - lostmap). Therefore,
the ability to model the given problem as a graph (here, as an MST) problem, i.e., the graph
modeling technique, is very important. However, once the contestants spot the underlying
graph and/or the greedy selection of edges, the problem may become ‘easy’.

Note that there are harder MST problem variants that may require more sophisticated
algorithm to solve, e.g., Steiner tree (see Book 2), Arborescence problem, degree constrained
MST, k-MST, etc.
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Programming Exercises related to Minimum Spanning Tree:

a. Standard

1. Entry Level: Kattis - islandhopping * (MST on small complete graph)

2. UVa 11228 - Transportation ... * (split output for short vs long edges)

3. UVa 11631 - Dark Roads * (weight of (all graph edges - all MST edges))

4. UVa 11747 - Heavy Cycle Edges * (sum the edge weights of the chords)

5. Kattis - cats * (standard MST)

6. Kattis - lostmap * (actually just a standard MST problem)

7. Kattis - minspantree * (standard MST problem; check if a spanning tree is
formed; also output the edges in any spanning tree in lexicographic order)

Extra UVa: 00908, 01174, 01208, 01235, 11710, 11733.

Extra Kattis: communicationssatellite, drivingrange, freckles, jurrasicjigsaw,
svemir.

Others: IOI 2003 - Trail Maintenance (use e�cient incremental MST).

b. Variants

1. Entry Level: UVa 10048 - Audiophobia * (classic MiniMax path problem)

2. UVa 01013 - Island Hopping * (LA 2478 - WorldFinals Honolulu02; very
interesting MST variant)

3. UVa 01265 - Tour Belt * (LA 4848 - Daejeon10; very interesting non-
standard variant of ‘maximum’ spanning tree)

4. UVa 10457 - Magic Car * (interesting MST modeling)

5. Kattis - millionairemadness * (MiniMax path problem)

6. Kattis - muddyhike * (MiniMax path problem)

7. Kattis - naturereserve * (Prim’s algorithm from multiple sources)

Extra UVa: 00534, 00544, 01160, 01216, 01234, 10099, 10147, 10397, 10462,
10600, 10842.

Extra Kattis: arcticnetwork, firetrucksarered, inventing, landline, redbluetree,
spider, treehouses.

Profile of Algorithm Inventors

Joseph Bernard Kruskal, Jr. (1928-2010) was an American computer scientist. His best
known work related to competitive programming is the Kruskal’s algorithm for computing
the Minimum Spanning Tree (MST) of a weighted graph. MST have interesting applications
in construction and pricing of communication networks.

Robert Clay Prim (born 1921) is an American mathematician and computer scientist.
In 1957, at Bell Laboratories, he developed Prim’s algorithm for solving the MST problem.
Prim knows Kruskal as they worked together in Bell Laboratories. Prim’s algorithm, was
originally discovered earlier in 1930 by Vojtêch Jarńık and rediscovered independently by
Prim. Thus Prim’s algorithm sometimes also known as Jarńık-Prim algorithm.

Vojtêch Jarńık (1897-1970) was a Czech mathematician. He developed the graph algorithm
now known as Prim’s algorithm. In the era of fast and widespread publication of scientific
results nowadays, Prim’s algorithm would have been credited to Jarńık instead of Prim.
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4.4 Single-Source Shortest Paths (SSSP)

4.4.1 Overview and Motivation

Problem: Given a weighted graph G and a source vertex s, what are the shortest paths from
s to all other vertices of G?

This problem is called the Single-Source Shortest Paths (SSSP) problem on a weighted
graph. It is a classical problem in graph theory and has many practical real life applications.
For example, we can model the city that we live in as a graph. The vertices are the road
junctions. The edges are the roads. The time taken to traverse a road is the weight of the
edge. You are currently in one road junction. What is the shortest possible time to reach
another certain road junction?

There are e�cient algorithms to solve the SSSP problem. If the graph is unweighted,
we can use the e�cient O(V + E) BFS algorithm shown earlier in Section 4.2.3. For a
general weighted graph, BFS does not work correctly and we should use algorithms like
the O((V + E) log V ) Dijkstra’s algorithm or the O(V E) Bellman-Ford algorithm. These
algorithms and their variations are discussed below.

Exercise 4.4.1.1*: Prove that the shortest path between two vertices u and v in a graph G
that has no negative and no zero-weight weight cycle must be a simple path (acyclic)! What
is the corollary of this proof?

Exercise 4.4.1.2*: Prove: Subpaths of shortest paths from u to v are shortest paths!

Exercise 4.4.1.3*: Prove or disprove: If there is only one possible path from vertex u to
vertex v in a general weighted graph and u is reachable from the source vertex s, then the
shortest path from s to v must be s ! . . . ! u ! . . . ! v!

4.4.2 On Unweighted Graph: BFS

Let’s revisit Section 4.2.3. The fact that BFS visits vertices of a graph layer by layer from a
source vertex (see Figure 4.2) makes BFS a natural choice for solving the SSSP problems on
unweighted graphs (or when all edges have constant weight13 C). In an unweighted graph,
the distance between two neighboring vertices connected with an edge is simply one unit.
Therefore, the layer count of a vertex u is precisely the shortest path value from the source
vertex s to that u. The shortest path from source vertex 5 to vertex 7 in Figure 4.2 is 4 as
7 is in the fourth layer in BFS sequence of visitation.

SSSP on unweighted graph is one of the most popular SSSP problems in programming
contests. It comes with many flavors, as we shall see below. Master them, as many of these
variations will reappear later in SSSP on weighted graph too.

Single-Source Single-Destination Shortest Paths (SSSDSP)

Some Shortest Paths problems specify both source vertex s and destination/target/sink ver-
tex t, i.e., we may not need to compute the shortest paths from s to all other vertices but
we can possibly terminate early.

On unweighted graph, a simple improvement for BFS if we also given the destination
vertex t is to do extra check at the start of the BFS while loop. When we pop up the front

13We can replace all edge weights with ones. The SSSP answers obtained after running an SSSP algorithm
for unweighted graph (BFS) is then multiplied back with that constant C to get the actual answers.
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most vertex u from the queue, we check if that vertex u is the destination vertex t. If it is, we
break the loop there. The worst time complexity is still O(V + E) if the destination vertex
t is at the max layer V -1, but BFS will generally stop sooner if the destination vertex is
somewhat closer to the source vertex s. This improvement strategy of immediately stopping
upon encountering t is correct, as BFS explores vertices of the unweighted graph layer by
layer. This technique also works on non-negative weighted graphs.

Single-Destination Shortest Paths (SDSP)

Some other Shortest Paths problems are as follows: instead of a single-source s, a single-
destination vertex t is given and we are asked what are the shortest paths from > 1 source
vertices to t. It is better to think backwards (recall one of the tips at Section 3.2.3). Instead
of running an SSSP algorithm multiple times frontally, we can transpose the graph (reverse
the direction of all its edges) and run the SSSP algorithm just once with the destination
vertex t as the source vertex. This technique works on weighted graphs too.

Multi-Sources Shortest Paths (MSSP)

Some (seemingly harder) Shortest Paths problems may involve more than a single source. We
call this variant the Multi-Sources Shortest Paths (MSSP) and can be on either unweighted
or weighted graph. This time, transposing the graph does not make any sense. A näıve
solution for MSSP on unweighted graph is to call BFS, the solution for SSSP on unweighted
graph, multiple times. If there are K possible sources, such a solution will run in a rather
slow O(K ⇥ (V + E))—Remember that K = O(V ).

Fortunately, this variant is actually not harder than the SSSP version. We can simply
enqueue all the sources and set dist[s] = 0 for each source s upfront during the initial-
ization step before running the BFS loop as per normal. As this is just one BFS call, its
runtime remains O(V + E). Another way of looking at this technique is to imagine that
there exists a (virtual) super source vertex that is (virtually) connected to all those source
vertices with (virtual) cost 0 (so these additional 0-weighted edges do not actually contribute
to the actual shortest paths). This technique works on weighted graphs too.

Shortest Path Reconstruction

A few Shortest Paths problems require us to actually reconstruct the actual shortest path
from the source vertex s to some other vertices, not just to find the shortest path values
from source vertex s. For example, in Figure 4.2, the shortest path from 5 to 7 is 5 ! 1 !
2 ! 3 ! 7. Such reconstruction is easy if we store the tree edges along the shortest path
spanning tree. This can be easily done using vector of integers vi p (see Section 2.4.1).
Each vertex v remembers its parent u (p[v] = u) in the shortest path spanning tree. For
this example, vertex 7/3/2/1 remembers 3/2/1/5 as its parent, respectively. To reconstruct
the actual shortest path, we can do a simple recursion from the last vertex 7 until we hit
the source vertex 5. This technique works on weighted graphs too.

On 0/1-Weighted Graph: BFS+Deque

Another rare variation of SSSP on ‘unweighted’ graph is given below. We call it the SSSP
on 0/1-weighted graph.

Given an R ⇥ C grid map like the one shown below, determine the shortest path from
any cell labeled as ‘A’ to any cell labeled as ‘B’. You can only walk through cells labeled
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with ‘.’ in N/E/S/W direction (counted as one unit) and cells labeled with alphabet ‘A’-‘Z’
(counted as zero unit)! Can you solve this in O(R⇥ C)?

....................CCCC. // The answer for this test case is 13 units
AAAAA...............CCCC. // Solution: Walk 11 steps east from
AAAAA.AAA...........CCCC. // the rightmost A to leftmost C in this row
AAAAAAAAA....###....CCCC. // Then, from the rightmost C in this row,
AAAAAAAAA................ // walk 2 steps south
AAAAAAAAA................ // to
.......DD..............BB // the leftmost B in this row

Notice that this problem requires the Multi-Sources technique discussed earlier (all the ‘A’
cells are the source vertices) and it also has di↵erent–but only two–weights: 0 (for walking
through alphabet cells) or 1 (for walking through ‘.’ cells). Obviously we will want to
prioritize walking through alphabet cells, as each such movement is ‘free’. Should we use
the general solution for SSSP on weighted graphs discussed in Section 4.4.3?

It turns out that we can just use deque (see Section 2.2.5) instead of queue for this. We
push to the front/back of deque if the edge weight is 0/1, respectively. This way, we keep
prioritizing the weight 0 edges first before considering the weight 1 edges.

As the destination vertices are also given (all the ‘B’ cells are the destination vertices),
we can also stop the BFS early upon encountering the first ‘B’ cell.

As we only replace queue with deque inside the BFS code and both deque push front
(not available in queue) and push back operations are O(1), the time complexity of this
solution remains O(V + E), or O(R⇥ C) in this case.

C++ code below shows BFS for Unweighted SSSDSP with shortest path reconstruction.

void printPath(int u) { // extract info from vi p
if (u == s) { printf("%d", s); return; } // base case, at source s
printPath(p[u]); // recursive
printf(" %d", u); // output: s -> ... -> t

}

// inside int main(), suppose s and t have been defined
vi dist(V, INF); dist[s] = 0; // INF = 1e9 here
queue<int> q; q.push(s);
p.assign(V, -1); // p is global
while (!q.empty()) {

int u = q.front(); q.pop();
if (u == t) break; // addition: destination t
for (auto &[v, w] : AL[u]) { // C++17 style, w ignored

if (dist[v] != INF) continue; // already visited, skip
dist[v] = dist[u]+1;
p[v] = u; // addition
q.push(v);

}
}
printPath(t), printf("\n"); // addition

Source code: ch4/sssp/bfs.cpp|java|py|ml
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Knight Moves

In chess, a knight can move in an interesting ‘L-shaped’ way. Formally, a knight can move
from a cell (r1, c1) to another cell (r2, c2) in an n ⇥ n chessboard if and only if (r1 � r2)2 +
(c1 � c2)2 = 5. A common query14 is the length of shortest moves to move a knight from a
starting cell to another target cell. There can be many queries on the same chessboard.

If the chessboard size is small, we can a↵ord to run one BFS per query from the given
starting cell. Each cell has at most 8 edges connected to another cells (some cells around
the border of the chessboard have less edges). We stop BFS as soon as we reach the target
cell. We can use BFS on this shortest path problem as the graph is unweighted. As there
are up to O(n2) cells in the chessboard, the overall time complexity is O(n2 + 8n2) = O(n2)
per query or O(Qn2) if there are Q queries.

However, the solution above is not the most e�cient way to solve this problem. If the
given chessboard is large and there are several queries, e.g., n = 1000 and Q = 16 in UVa
11643 - Knight Tour, the approach above will get TLE.

A better solution is to realize that if the chessboard is large enough and we pick two
random cells (ra, ca) and (rb, cb) in the middle of the chessboard with shortest knight moves
of d steps between them, shifting the cell positions by a constant factor does not change the
answer, i.e. the shortest knight moves from (ra+k, ca+k) and (rb+k, cb+k) is also d steps,
for a constant factor k.

Therefore, we can just run one BFS from an arbitrary source cell and do some adjustments
to the answer. However, there are a few special (literally) corner cases to be handled. Finding
these special cases can be a headache and many Wrong Answers are expected if one does
not know them yet. To make this section interesting, we purposely leave this crucial last
step as a starred exercise. Try solving UVa 11643 after you get these answers.

Exercise 4.4.2.1*: Find those special cases of UVa 11643 and address them. Hints:

1. Separate cases when 3  n  4 and n � 5.

2. Literally concentrate on corner cells and side cells.

3. What happen if the starting cell and the target cell are too close?

14Another variant is Knight’s tour: a sequence of knight moves on an n⇥n (as well as irregular) chessboard
such that the knight visits every square exactly once. This variant is a special case of an NP-hard problem
Hamiltonian-Tour that has a linear solution.
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4.4.3 On Weighted Graph: Dijkstra’s

If the given graph has edges with di↵erent15 weights, the fast O(V + E) and simple BFS
does not work. This is because there can be a ‘longer’ path (in terms of number of vertices
and edges involved in the path) that has smaller total weight than the ‘shorter’ path found
by BFS. For example, in Figure 4.16—left, the shortest path from source vertex 0 to vertex
3 is not via direct edge 0 ! 3 with weight 7 that is normally found by BFS, but a ‘detour’
path: 0 ! 1 ! 3 with smaller total weight 2 + 3 = 5 (see Figure 4.18—right).

To solve the SSSP problem on weighted graph, we use a greedy Edsger Wybe Dijkstra’s
algorithm. There are several ways to implement this classic algorithm mentioned in various
textbooks, e.g., [5, 35, 6]. In fact, Dijkstra’s original paper that describes this algorithm [8]
did not describe a specific implementation. We present two versions below.

On Non-Negative Weighted Graph: Original Dijkstra’s

Dijkstra’s algorithm starts with the standard initial condition for all SSSP algorithm. At
the beginning, we only know dist[s] = 0 (the shortest path from s to s itself is clearly 0)
while dist[u] = 1 for all other V -1 vertices that are not s. Dijkstra’s algorithm uses a
Priority Queue (pq) data structure of vertex information pair (dist[u], u) to dynamically
order (sort) the pairs by non-decreasing dist[u] values (vertex number u is unique). We
insert V vertex information pairs of all V vertices into pq upfront and this already takes
O(V log V ) so far.

Dijkstra’s algorithm will then process these vertices greedily: the vertex with the shortest
dist[u] first (also see Section 3.4.1 about greedy algorithm with pq and Exercise 4.4.3.4*
for a proof of correctness of this greedy strategy). Obviously at the start, the source vertex s
(with the smallest possible dist[s] = 0) will be processed first while the rest (currently with
unknown/infinitely large shortest path distance values) will be behind in pq. Then, Dijkstra’s
algorithm tries to relax each neighbor v of u = s. The relax(u, v, w u v) operation sets
dist[v] = min(dist[v], dist[u]+w u v). This opens up the possibilities of other shorter
paths from vertex v to some other vertices as the shortest path distance values from source
vertex s to v, i.e., dist[v], will be lowered from initially 1 into a (much) lower number.
We also update (lower) that information in pq and let pq dynamically (re-)order the vertices
based on non-decreasing dist[u] values.

Unfortunately, C++ STL priority queue/Java PriorityQueue/Python heapQ—that
has a Binary Heap data structure internally—does not have built-in capabilities (yet) to alter
the key values after they are inserted into pq. Fortunately, we can get around this issue by
using C++ STL set/Java TreeSet/OCaml Set—internally a balanced Binary Search Tree
data structure—instead. With16 C++ STL set/Java TreeSet/OCaml Set, we can update
(lower) old (higher dist[u], u) into new (lower dist[u], u) by first deleting old (higher
dist[u], u) in O(log V ) time and re-inserting new (lower dist[u], u) also in O(log V ) time.

Dijkstra’s algorithm then repeats the same process until pq is empty: it greedily takes
out vertex information pair (dist[u], u) from the front of pq and relax each outgoing edge
u ! v of u, updating (lowering) dist[v] and the associated pair in pq if the edge relaxation
is successful.

As each of the V vertices and each of the E edges are processed just once, the time com-
plexity of Dijkstra’s algorithm is O((V +E) log V ). The extra O(log V ) is for pq operations

15We have shown in Section 4.4.2 that the SSSP problem on weighted graph with constant weight C on
all edges or weighted graph with only 0/1-weighted edges are still solvable with BFS.

16As of year 2020, Python standard library does not have built-in balanced BST equivalent yet. Hence, if
you are a Python user, please use the Modified Dijkstra’s version instead.
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(we enqueue/dequeue V vertices into/from pq, respectively and we update (lower) shortest
path values at most E times. Note: O(logE) = O(log V 2) = O(2⇥ log V ) = O(log V )).

To strengthen your understanding about this Dijkstra’s algorithm, we show a step by
step example of running this Dijkstra’s algorithm on a small weighted graph and source
vertex s = 0. Take a careful look at the content of set<ii> pq at each step.

1. Figure 4.16—left: At the beginning, only dist[s] = dist[0] = 0,
set<ii> pq initially contains {(0, 0), (1, 1), (1, 2), (1, 3), (1, 4)}.

Figure 4.16: Dijkstra’s Animation on a Weighted Graph (from UVa 00341 [44]), Steps 1+2

2. Figure 4.16—right: Dequeue the vertex information pair at the front of pq: (0, 0).
Relax edges incident to vertex 0 to get dist[1] = 2, dist[2] = 6, and dist[3] = 7.
While doing this, we simultaneously update (lower) the keys in set<ii> pq.
set<ii> pq now contains {(2, 1), (6, 2), (7, 3), (1, 4)}.

3. Figure 4.17—left: Dequeue the vertex information pair at the front of pq: (2, 1).
Relax edges incident to vertex 1 to get dist[3] = min(dist[3], dist[1]+w(1,3))
= min(7, 2+3) = 5 and dist[4] = 8 and update the keys in pq.
set<ii> pq now contains {(5, 3), (6, 2), (8, 4)}.
By now, edge 0 ! 3 is not going to be part of the SSSP spanning tree from s = 0.

Figure 4.17: Dijkstra’s Animation, Steps 3+4

4. Figure 4.17—right: We dequeue (5, 3) and try to do relax(3, 4, 5), i.e., 5+5 = 10.
But dist[4] = 8 (from path 0 ! 1 ! 4), so dist[4] is unchanged.
set<ii> pq now contains {(6, 2), (8, 4)}.
By now, edge 3 ! 4 is also not going to be part of the SSSP spanning tree from s = 0.

5. Figure 4.18—left: We dequeue (6, 2) and do relax(2, 4, 1), making dist[4] = 7.
The shorter path from 0 to 4 is now 0 ! 2 ! 4 instead of 0 ! 1 ! 4.
set<ii> pq now contains {(7, 4)}.
By now, edge 1 ! 4 is also not going to be part of the SSSP spanning tree from s = 0.
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Figure 4.18: Dijkstra’s Animation, Steps 5+6

6. Figure 4.18—right: Finally, (7, 4) is processed but nothing changes.
set<ii> pq is now empty and Dijkstra’s algorithm stops here.
The final SSSP spanning tree describes the shortest paths from s to other vertices.

Our short C++ code is shown below and it looks very similar to Prim’s algorithm and BFS
code shown in Section 4.3.3 and 4.4.2, respectively. We call this implementation the Original
Dijkstra’s algorithm as we will modify them in the next subsection.

// inside int main()
vi dist(V, INF); dist[s] = 0; // INF = 1e9 here
set<ii> pq; // balanced BST version
for (int u = 0; u < V; ++u) // dist[u] = INF

pq.emplace(dist[u], u); // but dist[s] = 0

// sort the pairs by non-decreasing distance from s
while (!pq.empty()) { // main loop

auto [d, u] = *pq.begin(); // shortest unvisited u
pq.erase(pq.begin());
for (auto &[v, w] : AL[u]) { // all edges from u

if (dist[u]+w >= dist[v]) continue; // not improving, skip
pq.erase(pq.find({dist[v], v})); // erase old pair
dist[v] = dist[u]+w; // relax operation
pq.emplace(dist[v], v); // enqueue better pair

}
}

for (int u = 0; u < V; ++u)
printf("SSSP(%d, %d) = %d\n", s, u, dist[u]);

On Non-Negative Cycle Graph: Modified Dijkstra’s

There is another way to implement Dijkstra’s algorithm, especially for those who insist to
use C++ STL priority queue/Java PriorityQueue/Python heapq even though it does not
have built-in capabilities (yet) to alter the key values after they are inserted into Priority
Queue. Dijkstra’s algorithm will only lower dist[u] values and never increase the values.
This one sided update has an alternative Priority Queue solution.

To di↵erentiate this Dijkstra’s implementation with the previous one (called the Original
Dijkstra’s algorithm), we call this version as the Modified Dijkstra’s algorithm.
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Modified Dijkstra’s algorithm works 99% similar with the Original Dijkstra’s algorithm
as it also maintains a Priority Queue (pq) that stores the same vertex information pairs. But
this time, pq only contains one item initially: the base case (0, s) which is true for the source
vertex s. Then, Modified Dijkstra’s implementation repeats the following similar process
until pq is empty: it greedily takes out vertex information pair (d, u) from the front of pq.
If the shortest path distance from s to u recorded in d is greater than dist[u], it ignores u;
otherwise, it processes u. The reason for this special check is shown below.

When this algorithm process u, it tries to relax each neighbor v of u. Every time it
successfully relaxes an edge u ! v, it will always enqueue a pair (newer/shorter distance
from s to v, v) into pq and will always leave the inferior pair (older/longer distance from s
to v, v) inside pq. This is called as ‘Lazy Deletion’ and it causes more than one copy of the
same vertex in pq with di↵erent distances from the source. That is why we have to process
only the first dequeued vertex information pair which has the correct/shortest distance (other
copies will have the outdated/longer distance). This Lazy Deletion technique works as the
pq update operations in Modified Dijkstra’s only lower the dist[u] values.

On non-negative weighted graph, the time complexity of this Modified Dijkstra’s is iden-
tical with the Original Dijkstra’s. Again, each vertex will only be processed once. Each time
a vertex is processed, we try to relax its neighbors once (total E edges). Because of the
Lazy Deletion technique, we may have up to O(E) items in the pq at the same time, but
this is still O(logE) = O(log V ) per each dequeue or enqueue operations. Thus, the time
complexity remains at O((V + E) log V ).

To strengthen your understanding about this Modified Dijkstra’s algorithm, we show
a similar step by step example of running this Modified Dijkstra’s implementation on
the same small weighted graph and s = 0. Just take a careful look at the content of
priority_queue<ii> pq at each step that is di↵erent with the Original Dijkstra’s version.

1. Figure 4.16—left: At the beginning, only dist[s] = dist[0] = 0,
priority_queue<ii> pq initially contains {(0, 0)}.

2. Figure 4.16—right: Dequeue the vertex information pair at the front of pq: (0, 0).
Relax edges incident to vertex 0 to get dist[1] = 2, dist[2] = 6, and dist[3] = 7.
We always enqueue new vertex information pair upon a successful edge relaxation.
priority_queue<ii> pq now contains {(2, 1), (6, 2), (7, 3)}.

3. Figure 4.17—left: Dequeue the vertex information pair at the front of pq: (2, 1).
Relax edges incident to vertex 1 to get dist[3] = min(dist[3], dist[1]+w(1,3))
= min(7, 2+3) = 5 and dist[4] = 8 and immediately enqueue two more pairs in pq.
priority_queue<ii> pq now contains {(5, 3), (6, 2), (7, 3), (8, 4)}.
See that we have 2 entries of vertex 3 in pq with increasing distance from s. We do not
immediately delete the inferior pair (7, 3) from the pq and rely on future iterations of
our Modified Dijkstra’s to correctly pick the one with minimal distance later, which is
pair (5, 3). This is called as ‘lazy deletion’.
By now, edge 0 ! 3 is not going to be part of the SSSP spanning tree from s = 0.

4. Figure 4.17—right: We dequeue (5, 3) and try to do relax(3, 4, 5), i.e., 5+5 = 10.
But dist[4] = 8 (from path 0 ! 1 ! 4), so dist[4] is unchanged.
priority_queue<ii> pq now contains {(6, 2), (7, 3), (8, 4)}.
By now, edge 3 ! 4 is also not going to be part of the SSSP spanning tree from s = 0.

5. Figure 4.18—left: We dequeue (6, 2) and do relax(2, 4, 1), making dist[4] = 7.
The shorter path from 0 to 4 is now 0 ! 2 ! 4 instead of 0 ! 1 ! 4.
priority_queue<ii> pq now contains {(7, 3), (7, 4), (8, 4)} (2 entries of vertex 4).
By now, edge 1 ! 4 is also not going to be part of the SSSP spanning tree from s = 0.
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6. Figure 4.18—right: We do several bookkeeping at this step.
We dequeue (7, 3) but ignore it as we know that its d > dist[3] (i.e., 7 > 5). This
is when the actual deletion of the inferior pair (7, 3) is executed rather than at step
3 previously. By deferring it until now, the inferior pair (7, 3) is now located at the
front of pq for the standard O(log V ) deletion of C++ STL priority queue to work.
priority_queue<ii> pq now contains only {(7, 4), (8, 4)}.
We then dequeue (7, 4) and process it, but nothing changes.
priority_queue<ii> pq now contains only {(8, 4)}.
Finally, we dequeue (8, 4) but ignore it again as its d > dist[4] (i.e., 8 > 7).
priority_queue<ii> pq is now empty and the Modified Dijkstra’s stops here.
The final SSSP spanning tree describes the shortest paths from s to other vertices.

Our short C++ code is shown below and it is very identical with the Original Dijkstra’s
version. The main di↵erence is the way both variants use Priority Queue data structures.

// inside int main()
vi dist(V, INF); dist[s] = 0; // INF = 1e9 here
priority_queue<ii, vector<ii>, greater<ii>> pq;
pq.emplace(0, s);

// sort the pairs by non-decreasing distance from s
while (!pq.empty()) { // main loop

auto [d, u] = pq.top(); pq.pop(); // shortest unvisited u
if (d > dist[u]) continue; // a very important check
for (auto &[v, w] : AL[u]) { // all edges from u

if (dist[u]+w >= dist[v]) continue; // not improving, skip
dist[v] = dist[u]+w; // relax operation
pq.emplace(dist[v], v); // enqueue better pair

}
}

for (int u = 0; u < V; ++u)
printf("SSSP(%d, %d) = %d\n", s, u, dist[u]);

Source code: ch4/sssp/dijkstra.cpp|java|py|ml

SSSP on Weighted Graph Variants

All SSSP on unweighted graph variants discussed in Section 4.4.2 are also applicable on
weighted graph too, i.e., the SSSDSP variant (but only on non-negative weighted graph), the
SDSP variant, the MSSP variant, Shortest Path Reconstruction, including solving the 0/1-
weighted graph variant using the (slightly) slower Dijkstra’s algorithm instead of BFS+deque.
Next, we will discuss one other variant that is specific for weighted graphs.

SSSP on Non-Negative Cycle Graph

If the input graph has at least one (or more) negative edge weight(s), the Original Dijkstra’s
algorithm [5, 35, 6] will likely produce wrong answer as such negative edge weights violate
the assumption required for the greedy algorithm to work (see Exercise 4.4.3.4*). In
Figure 4.19—left, we have a graph with one negative edge weight but no negative weight
cycle—keep an eye on vertex 4 and edge 3 ! 4.
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Figure 4.19: Original Dijkstra’s Fails on a Negative Weight Graph, s = 0

In Figure 4.19—middle, we see that the Original Dijkstra’s wrongly propagates shortest path
distance from 0 ! 1 ! 3 to vertex 4, causing vertex 4 to believe that the shortest path from
source vertex 0 is 0 ! 1 ! 3 ! 4 with value 6. In Figure 4.19—right, we see that the very
last relax(2, 3, -10) operation causes the shortest path from source vertex 0 to vertex
3 to change into 0 ! 2 ! 3 with value 10+(-10) = 0. Vertex 4 has no way to know this
mistake as the Original Dijkstra’s will stop as soon as the last vertex 2 is processed.

Note that if you run our current implementation of Original Dijkstra’s on a graph
like in Figure 4.19, you will get undefined behavior because C++ STL set encounters
a problem when trying to erase the old vertex information pair. In the example above,
pq.find({dist[3], 3}) or pq.find({10, 3}) will return pq.end() as pair {10, 3} is al-
ready processed and is no longer in the Priority Queue (set). Trying to erase this pair via
the chained operation pq.erase(pq.find({dist[3], 3})) causes undefined behavior.

However, the Modified Dijkstra’s algorithm will work just fine, albeit slower. This is
because Modified Dijkstra’s algorithm will keep inserting new vertex information pair into
pq every time it manages to do a successful relax operation. Figure 4.19—middle and Figure
4.20—left depicts the same situation after identical initial steps between the Original and
the Modified Dijkstra’s. However, the next few actions of Modified Dijkstra’s are di↵erent.
Figure 4.20—middle, we see that vertex 3 is re-enqueued into pq. Figure 4.20—right, we
see that vertex 3 now correctly propagates shortest path distance 0 ! 2 ! 3 to vertex 4,
causing vertex 4 to now have the correct shortest path of 0 ! 2 ! 3 ! 4 of value 3.

Figure 4.20: Modified Dijkstra’s Can Work on a Non-Negative Cycle Graph, s = 0

If the weighted graph has no negative (weight) cycle, Modified Dijkstra’s algorithm will keep
propagating the shortest path distance information until there is no more possible relaxation
(which implies that all shortest paths from the source have been found). However, when
given a graph with negative weight cycle, the Modified Dijkstra’s algorithm will hopelessly
trapped in an infinite loop. Example: See the graph in Figure 4.22. Cycle 1 ! 2 ! 3 ! 1
is a negative cycle with weight 15 + 0 + (-42) = -27. Modified Dijkstra’s will keep looping
forever as it is always possible to continue relaxing the edges along a negative cycle.

On graph with (a few) negative weight edges but no negative cycle, Modified Dijkstra’s
runs slower than O((V +E) log V ) due to the need of re-processing already processed vertices
but the shortest paths values will eventually be correct, unlike the Original Dijkstra’s that
stops after at most O((V + E) log V ) operations but gives wrong answer on such a graph.
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In either case, the early termination technique when the destination vertex t is also given in
the SSSDSP variant will not work on such a graph.

However on an extreme case, we can actually setup a graph that has negative weights
but no negative cycle that can significantly slow down Modified Dijkstra’s algorithm, see
Figure 4.2117. On such test case like in Figure 4.21, Modified Dijkstra’s will first take the
bottom path 0 ! 2 ! 4 ! 6 ! 8 ! 10 with cost 0 + 0 + 0 + 0 + 0 = 0 before finding
0 ! 2 ! 4 ! 6 ! 8 ! 9 ! 10 with lower cost 0+0+0+0+1+(�2) = �1 and so on until
it explores all 25 possible paths from vertex 0 to vertex 10. It terminates with the correct
answer of path 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! 8 ! 9 ! 10 with cost �31. Each
additional triangle (two more vertices and three more edges) in such a graph increases the
runtime by twofold. Hence, Modified Dijkstra’s can be made to run in exponential time. The
di�culty of this test case for Modified Dijkstra’s is best appreciated using a live animation
so please also check VisuAlgo for the animation.

Figure 4.21: Modified Dijkstra’s Can Be Made to Run in Exponential Time

Exercise 4.4.3.1: The source code for the Original Dijkstra’s algorithm shown above uses
set<ii> instead of multiset<ii>. What if there are two (or more) di↵erent vertices that
have similar shortest path distance values from the source vertex s?

Exercise 4.4.3.2: The source code for the Modified Dijkstra’s algorithm shown above
uses priority queue<ii, vector<ii>, greater<ii>> pq; to sort pairs of integers by
increasing distance from source s. Can we get the same e↵ect without defining comparison
operator for the priority queue? Hint: We have used similar technique with Kruskal’s
algorithm implementation in Section 4.3.2.

Exercise 4.4.3.3: The source code for the Modified Dijkstra’s algorithm shown above has
this important check if (d > dist[u]) continue;. What if that line is removed? What
will happen to the Modified Dijkstra’s algorithm?

Exercise 4.4.3.4*: Prove the correctness of Dijkstra’s algorithm (both variants) on non-
negative weighted graphs!

Exercise 4.4.3.5*: Dijkstra’s algorithm (both variants) will run in O(V 2 log V ) if run on
a complete non-negative weighted graph where E = O(V 2). Show how to modify Dijkstra’s
implementation so that it runs in O(V 2) instead such complete graph! Hint: Avoid PQ.

Profile of Algorithm Inventor

Edsger Wybe Dijkstra (1930-2002) was a Dutch computer scientist. One of his famous
contributions to computer science is the shortest path-algorithm known as Dijkstra’s algo-
rithm [8]. He does not like ‘GOTO’ statement and influenced the widespread deprecation of
‘GOTO’ and its replacement: structured control constructs. One of his famous Computing
phrase: “two or more, use a for”.

17This test case is contributed by a Competitive Programming Book reader: Francisco Criado.
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4.4.4 On Small Graph (with Negative Cycle): Bellman-Ford

To solve the SSSP problem in the potential presence of negative weight cycle(s), we can
use the more generic (but slower) Bellman-Ford algorithm. This algorithm was invented by
Richard Ernest Bellman (the pioneer of DP techniques) and Lester Randolph Ford, Jr (the
same person who invented Ford-Fulkerson method for the Network Flow problem—discussed
in Book 2). The main idea of this algorithm is simple: relax all E edges (in arbitrary order)
V -1 times!

Initially dist[s] = 0, the base case. If we relax an edge (s, u), then dist[u] will have
the correct value. If we then relax an edge (u, v), then dist[v] will also have the correct
value. If we have relaxed all E edges V -1 times, then the shortest path from the source
vertex to the furthest vertex from the source (which will be a simple path with V -1 edges)
should have been correctly computed (see Exercise 4.4.4.1* for proof of correctness). The
basic Bellman-Ford C++ code is very simple, simpler than BFS and Dijkstra’s code:

// inside int main()
vi dist(V, INF); dist[s] = 0; // INF = 1e9 here
for (int i = 0; i < V-1; ++i) // total O(V*E)

for (int u = 0; u < V; ++u) // these two loops = O(E)
if (dist[u] != INF) // important check

for (auto &[v, w] : AL[u]) // C++17 style
dist[v] = min(dist[v], dist[u]+w);

The complexity of Bellman-Ford algorithm is O(V 3) if the graph is stored as an Adjacency
Matrix or O(V E) if the graph is stored as an Adjacency List or Edge List. This is simply
because if we use Adjacency Matrix, we need O(V 2) to enumerate all the edges in our graph
whereas it is just O(E) using either Adjacency List or Edge List. Both time complexities
are (much) slower compared to Dijkstra’s and this is one of the main reason why we don’t
normally use Bellman-Ford to solve standard SSSP on weighted graph.

For some improvement, we can add a Boolean flag modified = false in the outermost
loop (the one that repeats all E edges relaxation V -1 times). If at least one relaxation
operation is done in the inner loops (the one that explores all E edges), set modified = true.
We immediately break the outermost loop if variable modified is still false after all E edges
have been examined. If this no-relaxation happens at the (outermost) loop iteration i, then
there will be no further relaxation in iteration i+1, i+2, . . . , i = V -1 either. This way, the
time complexity of Bellman-Ford becomes O(kV ) where k is the number of iteration of the
outermost loop. Note that k is still O(V ) though.

Bellman-Ford will never be trapped in an infinite loop even if the given graph has negative
cycle(s). In fact, Bellman-Ford algorithm can be used to detect the presence of negative cycle
(e.g., UVa 00558 - Wormholes) although such SSSP problem is ill-defined.

Figure 4.22: Bellman-Ford can detect the presence of negative cycle (UVa 00558 [44])
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It can be proven (see Exercise 4.4.4.1*) that after relaxing all E edges V -1 times, we
should have solved the SSSP problem, i.e., we cannot relax any more edge. As the corollary:
if we can still relax an edge, there must be at least one negative cycle in our weighted graph.
This is a useful feature of the Bellman-Ford algorithm.

For example, in Figure 4.22—left, we see a simple graph with a negative cycle. After 1
pass, dist[1] = 72 and dist[2] = dist[3] = 114. After V -1 = 6�1 = 5 passes, dist[1]
= -36 and dist[2] = dist[3] = 6 and Bellman-Ford algorithm stops. However, as there
is a negative cycle, we can still do successful edge relaxations, e.g., we can still relax dist[2]
= -36+15 = -21. This is lower than the current value of dist[2] = 6. The presence of a
negative cycle (of weight 15+0-42 = -27) causes the vertices reachable from this negative
cycle to have ill-defined shortest paths information. This is because one can simply traverse
this negative cycle infinite number of times to make all reachable vertices from this negative
cycle to have negative infinity shortest paths information. Notice that in Figure 4.22—right,
vertex 4 is a↵ected by the negative cycle whereas vertex 5 is not. The additional code to
check for negative cycle after running the O(V E) Bellman-Ford is shown below.

Our more complete Bellman-Ford C++ code is shown below. It shows Bellman-Ford with
optimization and additional negative cycle check18.

// inside int main()
vi dist(V, INF); dist[s] = 0; // INF = 1e9 here
for (int i = 0; i < V-1; ++i) { // total O(V*E)

bool modified = false; // optimization
for (int u = 0; u < V; ++u) // these two loops = O(E)

if (dist[u] != INF) // important check
for (auto &[v, w] : AL[u]) { // C++17 style

if (dist[u]+w >= dist[v]) continue; // not improving, skip
dist[v] = dist[u]+w; // relax operation
modified = true; // optimization

}
if (!modified) break; // optimization

}

bool hasNegativeCycle = false;
for (int u = 0; u < V; ++u) // one more pass to check

if (dist[u] != INF)
for (auto &[v, w] : AL[u]) // C++17 style

if (dist[v] > dist[u]+w) // should be false
hasNegativeCycle = true; // if true => -ve cycle

if (hasNegativeCycle)
printf("Negative Cycle Exist\n");

else {
for (int u = 0; u < V; ++u)

printf("SSSP(%d, %d) = %d\n", s, u, dist[u]);
}

Source code: ch4/sssp/bellman ford.cpp|java|py|ml

18There is another algorithm that can do negative cycle check: the O(V 3) Floyd-Warshall algorithm
applications that is discussed in Section 4.5.3.
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Bellman-Ford-Moore (SPFA) Algorithm

A known improvement for Bellman-Ford algorithm is Moore’s improvement (let’s just call
it as Bellman-Ford-Moore algorithm19). Bellman-Ford-Moore utilizes a queue to eliminate
redundant operations in the standard Bellman-Ford algorithm. This algorithm was discov-
ered by Moore in 1957 [41] and independently by Bellman in 1958 [2]. Bellman-Ford-Moore
requires two additional data structures on top of Bellman-Ford code shown earlier:

1. A queue<int> to store the next vertex to be processed (due to successful relaxation).

2. vi in queue of size V to quickly check if a vertex is currently in the queue or not.

Our short C++ code that implements Bellman-Ford-Moore is shown below:

// inside int main()
vi dist(V, INF); dist[s] = 0; // INF = 1e9 here
queue<int> q; q.push(s); // like BFS queue
vi in_queue(V, 0); in_queue[s] = 1; // unique to SPFA
while (!q.empty()) {

int u = q.front(); q.pop(); in_queue[u] = 0; // pop from queue
for (auto &[v, w] : AL[u]) { // C++17 style

if (dist[u]+w >= dist[v]) continue; // not improving, skip
dist[v] = dist[u]+w; // relax operation
if (in_queue[v]) continue; // v already in q, skip
q.push(v);
in_queue[v] = 1; // v is currently in q

}
}
for (int u = 0; u < V; ++u)

printf("SSSP(%d, %d) = %d\n", s, u, dist[u]);

Source code: ch4/sssp/bellman ford moore.cpp|java|py|ml

The true time complexity of this algorithm is hard to analyze. It runs in O(kE) where k is a
number that depends on the input graph. The maximum k can still be V (which results in
Bellman-Ford-Moore having the same worst case time complexity as the O(V E) Bellman-
Ford algorithm). However, we have tested that for many SSSP problems in UVa/Kattis
online judge that are listed in this book, Bellman-Ford-Moore (which uses a queue) can be
as fast as a good implementation of Dijkstra’s algorithm (which uses a priority queue).

As Bellman-Ford-Moore is somewhat similar with the Modified Dijkstra’s algorithm, it
can deal with graph with negative weight edge as long as it has no negative cycle20. If
the graph has at least one negative cycle that is reachable from the source vertex s, the
pure form of Bellman-Ford-Moore fails to terminate as the vertices along the negative cycle
repeatedly reenter the queue. However, it can be slightly modified—similar with standard
Bellman-Ford check—to detect negative weight cycle in O(V E).

Exercise 4.4.4.1*: Why just by relaxing all E edges (in any order) of our weighted graph
V -1 times, Bellman-Ford algorithm will get the correct SSSP information? Prove it!

19In Chinese Computer Science community, this algorithm is known as Shortest Path ‘Faster’ Algorithm
(SPFA) as Duan Fanding published it in Chinese in 1994 [13]. The keyword ‘faster’ in the SPFA name is
potentially misleading as it is not theoretically nor empirically faster than Dijkstra’s algorithm.

20We use Bellman-Ford-Moore as a subroutine of Min Cost Max Flow (MCMF) algorithm in Book 2.
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4.4.5 SSSP in Programming Contests

Summary of Classic SSSP Variations

In Table 4.3, we summarize the basic forms and all variants of SSSP problems that we have
discussed in this section, together with one example from UVa and Kattis online judge each.
It is a good idea to at least solve at least one problem per each variant.

Variant Name UVa Kattis
SSSP on Unweighted Graph, Basic 00336 conquestcampaign
SSSP on Weighted Graph, Basic 10986 shortestpath1
SSSP on Negative Cycle Graph, Basic 00558 shortestpath3
SSSP on Implicit Graph, Unweighted 10653 grid
SSSP on Implicit Graph, Weighted 00929 blockcrusher
SS Single-Destination SP 01148 flowerytrails
Single-Destination SP 01112 detour
Multi-Sources SP 13127 firestation
With shortest path reconstruction 11049 detour
On 0/1-Weighted Graph 11573 showroom
Basic State-Space Search (also see Book 2) 10150 fulltank

Table 4.3: Classic SSSP Variations and Some Example Problems

Based on our experience, many shortest paths problems are not posed on weighted graphs
that require Dijkstra’s (or other more advanced) algorithms. If you look at the programming
exercises listed in Section 4.4 (and in Book 2), you will see that many of them (⇡ half) are
posed on unweighted graphs that are solvable with just BFS (see Section 4.4.2).

Also according to our experience, many shortest paths problems involving weighted
graphs are not posed on graphs that have negative weight that require Bellman-Ford (or
other similarly slow) algorithm, or worse, on graphs that have negative cycle where the
SSSP problem is ill-defined. If you look at the programming exercises listed in Section 4.4,
you will see that very few of them are posed on graphs that have negative weight (cycle)
and thus must be solved with heavy Bellman-Ford algorithm (see Section 4.4.4).

Therefore as a rule of thumb, if you are given an SSSP problem, simply decide21 if the
graph that you are dealing with is weighted. If it is unweighted, just use the fast O(V +E)
BFS algorithm. Otherwise, we should use the slightly slower O((V + E) log V ) Dijkstra’s
algorithm (either version).

VisuAlgo

We have provided the animation of almost all popular SSSP algorithms that we have dis-
cussed in this section inside VisuAlgo. Use it to further strengthen your understanding of
these SSSP algorithms by providing your own input graph (directed weighted/unweighted)
(general/special) graph plus a source vertex and then see the SSSP algorithm being animated
live on that particular input graph. We believe that the live animation is much better than
the static text inside this book. The URL for the visualization is shown below.

Visualization: https://visualgo.net/en/sssp

21Technically, you should be able to solve almost all SSSP problems by using O((V +E) log V ) Dijkstra’s
algorithm most of the time as the O(log V ) di↵erence is not that big, see Table 4.4.
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Sample Application: Kattis - fulltank/UVa 11367 - Full Tank?

The most important part for solving the SSSP problems is not the knowledge of various SSSP
algorithms, but actually about graph modeling skill — the ability to spot the underlying
graph in the problem statement. We repeatedly mention this throughout this chapter because
it is important. We illustrate this with one example.

Abridged problem description: Given a connected weighted graph length that stores the
road length between E pairs of cities i and j (1  V  1000, 0  E  10 000), the price
p[i] of fuel at each city i, and the fuel tank capacity c of a car (1  c  100), determine the
cheapest trip cost from starting city s to ending city e using a car with fuel capacity c. All
cars use one unit of fuel per unit of distance and start with an empty fuel tank.

With this problem, we want to discuss the importance of graph modeling. The explicitly
given graph in this problem is a weighted graph of the road network. However, we cannot
solve this problem with just this graph. This is because the state22 of this problem requires
not just the current location (city) but also the fuel level at that location. Otherwise, we
cannot determine whether the car has enough fuel to make a trip along a certain road
(because we cannot refuel in the middle of the road). Therefore, we use a pair of information
to represent the state: (location, fuel) and by doing so, the total number of vertices of the
modified graph explodes from just 1000 vertices to 1000 ⇥ 100 = 100 000 vertices. We call
the modified graph: ‘State-Space’ graph.

In the State-Space graph, the source vertex is state (s, 0)—at starting city s with empty
fuel tank and the target vertices are states (e, any)—at ending city e with any level of fuel
between [0..c]. There are two types of edge in the State-Space graph: 0-weighted edge
that goes from vertex (x, fuelx) to vertex (y, fuelx � length(x, y)) if the car has su�cient
fuel to travel from vertex x to vertex y, and the p[x]-weighted edge that goes from vertex
(x, fuelx) to vertex (x, fuelx + 1) if the car can refuel at vertex x by one unit of fuel (note
that the fuel level cannot exceed the fuel tank capacity c). Now, running Dijkstra’s on this
weighted State-Space graph gives us the solution for this problem (also see Book 2 for more
discussions).

What’s Next?

We remark that recent programming contest problems involving SSSP are no longer written
as straightforward SSSP problems shown in Table 4.3 but written in a much more creative
fashion, e.g., (UVa 10067, 10801, 11367, 11492, 12160, Kattis - getshorty, emptyingbaltic,
shoppingmalls, tide, etc). Therefore, to do well in programming contests, make sure that
you have this graph modeling soft skill.

In Section 4.5, we will discuss All-Pairs Shortest Paths (APSP) problem. In Section
4.6.1, we will discuss shortest paths problem on special graphs. Then in Book 2, we will
discuss the harder versions of SSSP problem that require more complex graph modeling
and/or technique like Meet in the Middle/Bidirectional Search.

Exercise 4.4.5.1: The graph modeling for Kattis - fulltank/UVa 11367 - Full Tank? above
transform the SSSP problem on weighted graph into SSSP problem on weighted State-Space
graph. Can we solve this problem with DP? If we can, why? If we cannot, why not? Hint:
Read Section 4.6.1 and also try Exercise 4.6.1.1.

22Recall: State is a subset of parameters of the problem that can succinctly describes the problem.
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Programming Exercises related to Single-Source Shortest Paths (SSSP) Problems:

a. On Unweighted Graph: BFS, Easier

1. Entry Level: UVa 00336 - A Node Too Far * (simple SSSP; BFS)

2. UVa 00429 - Word Transformation * (each word is a vertex, connect 2
words with an edge if di↵er by 1 letter)

3. UVa 10653 - Bombs; NO they ... * (need e�cient BFS implementation)

4. UVa 12160 - Unlock the Lock * (LA 4408 - KualaLumpur08; s: (4-digits
number); edges: button pushes; BFS)

5. Kattis - buttonbashing * (very similar to UVa 12160)

6. Kattis - grid * (modified BFS with step size multiplier)

7. Kattis - horror * (SSSP from all sources = horror movies; report lowest ID
with the highest unweighted SSSP distance)

Extra UVa: 00388, 00627, 00762, 00924, 01148, 10009, 10610, 10959.

Extra Kattis: conquestcampaign, elevatortrouble, erraticants, onaverageth-
eyrepurple, spiral, wettiles.

b. On Unweighted Graph: BFS, Harder

1. Entry Level: Kattis - lost * (interesting twist of BFS/SSSP spanning tree)

2. UVa 11352 - Crazy King * (filter the graph first; then it becomes SSSP)

3. UVa 11792 - Krochanska is Here * (be careful with ‘important station’)

4. UVa 12826 - Incomplete Chessboard * (SSSP from (r1, c1) to (r2, c2)
avoiding (r3, c3); BFS)

5. Kattis - fire2 * (very similar to UVa 11624)

6. Kattis - mallmania * (multi-sources BFS from m1; get minimum at border
of m2; also available at UVa 11101 - Mall Mania)

7. Kattis - oceancurrents * (0/1-weighted SSSP; BFS+deque; also available at
UVa 11573 - Ocean Currents)

Extra UVa: 00314, 00383, 00859, 00949, 10044, 10067, 10977, 10993, 11049,
11377.

Extra Kattis: beehives2, dungeon, erdosnumbers, fire3, landlocked, lava, show-
room, sixdegrees, slikar, zoning.

c. Knight Moves

1. Entry Level: UVa 00439 - Knight Moves * (one BFS per query is enough)

2. UVa 00633 - Chess Knight * (alternating Knight Moves and Bishop
Moves (limited to distance 2)); solvable with just one BFS per query)

3. UVa 10426 - Knights’ Nightmare * (for each knight, do BFS when the
monster is sleep/awake; try: one awake the monster, the rest go around)

4. UVa 10477 - The Hybrid Knight * (s: (row, col, knight state); implicit
unweighted graph; di↵erent edges per di↵erent knight state)

5. Kattis - grasshopper * (BFS on implicit Knight jump graph)

6. Kattis - hidingplaces * (SSSP from (r, c); find cells with max distance; print)

7. Kattis - knightjump * (unweighted SSSP from the cell that contains ‘K’ to
(1, 1) using Knight jump movements; avoid ‘#’ cells)
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d. On Weighted Graph: Dijkstra’s, Easier

1. Entry Level: Kattis - shortestpath1 * (very standard Dijkstra’s problem)

2. UVa 01112 - Mice and Maze * (LA 2425 - SouthwesternEurope01; SDSP)

3. UVa 10986 - Sending email * (direct Dijkstra’s application)

4. UVa 13127 - Bank Robbery * (Dijkstra’s from multiple sources)

5. Kattis - flowerytrails * (Dijkstra’s; record predecessor graph as there can be
multiple shortest paths; also available at UVa 12878 - Flowery Trails)

6. Kattis - shortestpath2 * (Dijkstra’s with modification; edges only available
periodically; be careful with P = 0 case)

7. Kattis - texassummers * (Dijkstra’s; complete weighted graph; print path)

Extra UVa: 00929.

Extra Kattis: george, getshorty, hopscotch50, subway2.

e. On Weighted Graph: Dijkstra’s, Harder

1. Entry Level: Kattis - visualgo * (Dijkstra’s produces SSSP spanning DAG
if there are multiple shortest paths from s to t; counting paths on DAG)

2. UVa 00589 - Pushing Boxes * (weighted SSSP: move box from s to t +
unweighted SSSP: move player to correct position to push the box)

3. UVa 12047 - Highest Paid Toll * (clever usage of Dijkstra’s; run Dijk-
stra’s from source and from destination)

4. UVa 12950 - Even Obsession * (clever usage of Dijstra’s; instead of
extending by one edge, we can extend by two edges at a time)

5. Kattis - blockcrusher * (Dijkstra’s from top row to bottom row; print path)

6. Kattis - emptyingbaltic * (Dijkstra’s variant; grow spanning tree from drain)

7. Kattis - invasion * (SSSP with multiple and successive sources; multiple calls
of Dijkstra’s (gets lighter each time if pruned properly))

Extra UVa: 00157, 00523, 00721, 01202, 10166, 10187, 10356, 10603, 10801,
10967, 11338, 11492, 11833, 12144.

Extra Kattis: backpackbuddies, detour, firestation, forestfruits, fulltank, grue-
somecave, passingsecrets, shoppingmalls, tide, wine.

Others: IOI 2011 - Crocodile (can be modeled as an SSSP problem).

f. On Small Graph (with Negative Cycle): Bellman-Ford

1. Entry Level: UVa 00558 - Wormholes * (check if negative cycle exists)

2. UVa 10449 - Tra�c * (find the minimum weight path, which may be
negative; be careful: 1 + negative weight is lower than 1)

3. UVa 11280 - Flying to Fredericton * (modified Bellman-Ford)

4. UVa 12768 - Inspired Procrastination * (insert �F as edge weight; see
if negative cycle exists; or find min SSSP value from s = 1)

5. Kattis - hauntedgraveyard * (Bellman-Ford; negative cycle check needed)

6. Kattis - shortestpath3 * (Bellman-Ford; do DFS/BFS from vertices that are
part of any negative cycle)

7. Kattis - xyzzy * (check ‘positive’ cycle; check connectedness; also available
at UVa 10557 - XYZZY)

Extra UVa: 00423.

Extra Kattis: crosscountry.
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4.5 All-Pairs Shortest Paths (APSP)

4.5.1 Overview and Motivation

Abridged problem description: Given a connected, weighted graph G with V  100 and
two vertices s and d, find the maximum possible value of dist[s][i]+dist[i][d] over all
possible i 2 [0..V -1]. This is the key idea to solve UVa 11463 - Commandos. What is the
best way to implement the solution code for this problem?

This problem requires the shortest path information from all possible sources (all possible
vertices) of G. We can make V calls of Dijkstra’s algorithm that we have learned earlier in
Section 4.4.3 above. However, can we solve this problem in a shorter way—in terms of code
length? The answer is yes. If the given weighted graph has V  450, then there is another
algorithm that is much simpler to code.

Load the small graph into an Adjacency Matrix AM and then run the following four-liner
code with three nested loops shown below. When it terminates, AM[i][j] will contain the
shortest path distance between two pair of vertices i and j in G. The original problem (UVa
11463 above) now becomes easy.

// inside int main()
// precondition: AM[i][j] contains the weight of edge (i, j)
// or INF (1B) if there is no such edge, use memset(AM, 63, sizeof AM)
// Adjacency Matrix AM is a 32-bit signed integer array
for (int k = 0; k < V; ++k) // loop order is k->i->j

for (int i = 0; i < V; ++i)
for (int j = 0; j < V; ++j)

AM[i][j] = min(AM[i][j], AM[i][k]+AM[k][j]);

Source code: ch4/floyd warshall.cpp|java|py|ml

This algorithm is called Floyd-Warshall algorithm, invented by Robert W Floyd [15] and
Stephen Warshall [60]. Floyd-Warshall is a DP algorithm that clearly runs in O(V 3) due to
its 3 nested loops23. Therefore, it can only be used for graph with V  450 in programming
contest setting. In general, Floyd-Warshall solves another classical graph problem: the All-
Pairs Shortest Paths (APSP) problem. It is an alternative algorithm (for small graphs)
compared to calling SSSP algorithm multiple times (assuming non-negative edge weights):

1. V calls of O((V + E) log V ) Dijkstra’s = O(V 3 log V ) if E = O(V 2).

2. V calls of O(V E) Bellman-Ford = O(V 4) if E = O(V 2).

In programming contest setting, Floyd-Warshall main attractiveness is basically its imple-
mentation speed—four short lines only. If the given graph is small (V  450), do not hesitate
to use this algorithm—even if you only need a solution for the SSSP problem.

Exercise 4.5.1.1: Is there a reason why AM[i][j] must be set to 1B (109) to indicate that
there is no edge between i to j? Why don’t we use 231-1 (MAX INT)?

Exercise 4.5.1.2: In Section 4.4.4, we di↵erentiate graph with negative weight edges but
no negative cycle and graph with negative weight cycle. Will this short Floyd-Warshall
algorithm works on graph with negative weight and/or negative cycle?

23Floyd-Warshall must use Adjacency Matrix so that the weight of edge (i, j) can be accessed and then
possibly modified in O(1).
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4.5.2 Floyd-Warshall Algorithm

We provide this section for the benefit of readers who are interested to know why Floyd-
Warshall works. This section can be skipped if you just want to use this algorithm per se.
However, examining this section can further strengthen your DP skill. Note that there are
graph problems that have no classical algorithm yet and must be solved with DP techniques
(see Section 4.6.1).

Figure 4.23: Floyd-Warshall Explanation 1

The basic idea behind Floyd-Warshall is to gradually allow the usage of intermediate ver-
tices (vertex [0..k]) to form the shortest paths. We denote the shortest path value from
vertex i to vertex j using only intermediate vertices [0..k] as sp(i,j,k). Let the ver-
tices be labeled from 0 to V -1. We start with direct edges only when k = �1, i.e.,
sp(i,j,-1) = weight of edge (i, j). Then, we find the shortest paths between any two
vertices with the help of restricted intermediate vertices from vertex [0..k]. In Fig-
ure 4.23, we want to find sp(3,4,4)—the shortest path from vertex 3 to vertex 4, us-
ing any intermediate vertex in the graph (vertex [0..4]). The eventual shortest path
is path 3-0-2-4 with cost 3. But how to reach this solution? We know that by using
only direct edges, sp(3,4,-1) = 5, as shown in Figure 4.23. The solution for sp(3,4,4)
will eventually be reached from sp(3,2,2)+sp(2,4,2). But with using only direct edges,
sp(3,2,-1)+sp(2,4,-1) = 3+1 = 4 is still > 3.

Figure 4.24: Floyd-Warshall Explanation 2

Floyd-Warshall then gradually allow k = 0, then k = 1, k = 2 . . . , up to k = V -1.
When we allow k = 0, i.e., vertex 0 can now be used as an intermediate vertex, then
sp(3,4,0) is reduced as sp(3,4,0) = sp(3,0,-1) + sp(0,4,-1) = 1+3 = 4, as shown in
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Figure 4.24. Note that with k = 0, sp(3,2,0)—which we will need later—also drop from
3 to sp(3,0,-1) + sp(0,2,-1) = 1+1 = 2. Floyd-Warshall will process sp(i,j,0) for all
other pairs considering only vertex 0 as the intermediate vertex but there is only one more
change: sp(3,1,0) from 1 down to 3.

Figure 4.25: Floyd-Warshall Explanation 3

When we allow k = 1, i.e., vertex 0 and 1 can now be used as intermediate vertices, then
it happens that there is no change to sp(3,2,1), sp(2,4,1), nor to sp(3,4,1). However,
two other values change: sp(0,3,1) and sp(2,3,1) as shown in Figure 4.25 but these two
values will not a↵ect the final computation of the shortest path between vertex 3 and 4.

Figure 4.26: Floyd-Warshall Explanation 4

When we allow k = 2, i.e., vertex 0, 1, and 2 now can be used as the intermediate vertices,
then sp(3,4,2) is reduced again as sp(3,4,2) = sp(3,2,2)+sp(2,4,2) = 2+1 = 3 as
shown in Figure 4.26. Floyd-Warshall repeats this process for k = 3 and finally k = 4 but
sp(3,4,4) remains at 3 and this is the final answer.

Formally, we define Floyd-Warshall DP recurrences as follow. Let Dk
i,j be the shortest

distance from i to j with only [0..k] as intermediate vertices. Then, Floyd-Warshall base
case and recurrence are as follow:

D�1
i,j = weight(i, j). This is the base case when we do not use any intermediate vertices.

Dk
i,j = min(Dk�1

i,j , Dk�1
i,k +Dk�1

k,j ) = min(not using vertex k, using vertex k), for k � 0.

This DP formulation must be filled layer by layer (by increasing k). To fill out an entry in
the table k, we make use of the entries in the table k-1. For example, to calculate D2

3,4, (row
3, column 4, in table k = 2, index start from 0), we look at the minimum of D1

3,4 or the
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sum of D1
3,2 + D1

2,4 (see Figure 4.27). The näıve implementation is to use a 3-dimensional
matrix D[k][i][j] of size O(V 3). However, since to compute layer k we only need to know
the values from layer k-1, we can drop dimension k and compute D[i][j] ‘on-the-fly’ (see
the space saving technique discussed in Section 3.5.1). Thus, Floyd-Warshall algorithm just
need O(V 2) space although it still runs in O(V 3).

Figure 4.27: Floyd-Warshall DP Table

4.5.3 Other Applications

The main purpose of Floyd-Warshall is to solve the APSP problem. However, Floyd-Warshall
is frequently used in other problems too, as long as the input graph is small. Here we list
down several problem variants that are also solvable with Floyd-Warshall.

Solving the SSSP Problem on a Small (Weighted) Graph

If we have the All-Pairs Shortest Paths (APSP) information, we also know the Single-
Source Shortest Paths (SSSP) information from any possible source. If the given (weighted)
graph is small V  450, it may be beneficial, in terms of coding time, to use the four-
liner Floyd-Warshall code rather than the longer BFS algorithm (for unweighted graph) or
Dijkstra’s/Bellman-Ford algorithms (for weighted graph).

Printing the Shortest Paths

A common issue encountered by programmers who use the four-liner Floyd-Warshall with-
out understanding how it works is when they are asked to print the shortest paths too.
In BFS/Dijkstra’s/Bellman-Ford/SPFA algorithms, we just need to remember the shortest
paths spanning tree by using a 1D vi p to store the parent information for each vertex. In
Floyd-Warshall, we need to store a 2D parent matrix. The modified code is shown below.

// inside int main()
// let p be a 2D parent matrix, where p[i][j] is the last vertex before j
// on a shortest path from u to v, i.e., i -> ... -> p[i][j] -> j
for (int i = 0; i < V; ++i)

for (int i = 0; j < V; ++j)
p[i][j] = i; // initialization

for (int k = 0; k < V; ++k)
for (int i = 0; i < V; ++i)

for (int j = 0; j < V; ++j)
if (AM[i][k]+AM[k][j] < AM[i][j]) { // use if statement

AM[i][j] = AM[i][k]+AM[k][j];
p[i][j] = p[k][j]; // update the p matrix

}
// when we need to print the shortest paths, we can call the method below:
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void printPath(int i, int j) {
if (i != j) printPath(i, p[i][j]);
printf(" %d", v);

}

Transitive Closure (Warshall’s Algorithm)

Stephen Warshall [60] developed an algorithm for the Transitive Closure problem: Given a
graph, determine if vertex i is connected to j, directly or indirectly. This variant uses logical
bitwise operators which is (much) faster than arithmetic operators. Initially, AM[i][j]
contains 1 (true) if vertex i is directly connected to vertex j, 0 (false) otherwise. After
running O(V 3) Warshall’s algorithm below, we can check if any two vertices i and j are
directly or indirectly connected by checking AM[i][j].

for (int k = 0; k < V; ++k)
for (int i = 0; i < V; ++i)

for (int j = 0; j < V; ++j)
AM[i][j] |= (AM[i][k] & AM[k][j]);

MiniMax and MaxiMin (Revisited)

We have seen the MiniMax (and MaxiMin) path problem earlier in Section 4.3.4. The
solution using Floyd-Warshall is shown below. First, initialize AM[i][j] to be the weight of
edge (i, j). This is the default MiniMax cost for two vertices that are directly connected.
For pair (i, j) without any direct edge, set AM[i][j] = INF. Then, we try all possible
intermediate vertex k. The MiniMax cost AM[i][j] is the minimum of either (itself) or (the
maximum between AM[i][k] or AM[k][j]). This approach can only be used if V  450.

for (int k = 0; k < V; ++k)
for (int i = 0; i < V; ++i) // reverse min and max

for (int j = 0; j < V; ++j) // for MaxiMin problem
AM[i][j] = min(AM[i][j], max(AM[i][k], AM[k][j]));

Finding the (Cheapest/Negative) Cycle

In Section 4.4.4, we have seen how Bellman-Ford terminates after O(V E) steps regardless of
the type of input graph (as it relax all E edges at most V -1 times) and how Bellman-Ford
can be used to check if the given graph has negative cycle. Floyd-Warshall also terminates
after O(V 3) steps regardless of the type of input graph. This feature allows Floyd-Warshall
to be used to detect whether the (small) graph has a cycle, a negative cycle, and even finding
the cheapest (non-negative) cycle among all possible cycles (the girth of the graph).

To do this, we initially set the main diagonal of the Adjacency Matrix to have a very
large value, i.e., AM[i][i] = INF (1B). Then, we run the O(V 3) Floyd-Warshall algorithm.
Now, we check the value of AM[i][i], which now means the shortest cyclic path weight
starting from vertex i that goes through up to V -1 other intermediate vertices and returns
back to i. If AM[i][i] is no longer INF for any i 2 [0..V-1], then we have a cycle. The
smallest non-negative AM[i][i], 8i 2 [0..V-1] is the cheapest cycle. If AM[i][i] < 0 for
any i 2 [0..V-1], then we have a negative cycle because if we take this cyclic path one
more time, we will get an even shorter ‘shortest’ path.
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Finding the Diameter of a Graph

The diameter of a graph is defined as the maximum shortest path distance between any pair
of vertices of that graph. To find the diameter of a graph, we first find the shortest path
between each pair of vertices (i.e., the APSP problem). The maximum distance found is the
diameter of the graph. UVa 01056 - Degrees of Separation, which is an ICPC World Finals
problem in 2006, is precisely this problem. To solve this problem, we can first run an O(V 3)
Floyd-Warshall to compute the required APSP information. Then, we can figure out what
is the diameter of the graph by finding the maximum value in the APSP-processed AM in
O(V 2). However, we can only do this for a small graph with V  450.

Finding the SCCs of a Directed Graph

In Section 4.2.2, we have learned how the O(V +E) Tarjan’s algorithm can be used to identify
the SCCs of a directed graph. However, the code is a bit long. If the input graph is small
(e.g., UVa 00247 - Calling Circles, UVa 01229 - Sub-dictionary, UVa 10731 - Test), we can
also identify the SCCs of the graph in O(V 3) using Warshall’s transitive closure algorithm
and then use the following check: to find all members of an SCC that contains vertex i,
check all other vertices j 2 [0..V-1]. If AM[i][j] && AM[j][i] is true, then both vertex
i and j belong to the same SCC.

Exercise 4.5.3.1: How to find the transitive closure of a graph with V  1000, E  100 000?
Suppose that there are only Q (1  Q  100) transitive closure queries for this problem in
form of this question: is vertex u connected to vertex v, directly or indirectly? What if the
input graph is directed? Does this directed property simplify the problem?

Exercise 4.5.3.2: Arbitrage is the trading of one currency for another with the hopes
of taking advantage of small di↵erences in conversion rates among several currencies in
order to achieve a profit. For example (UVa 00436 - Arbitrage (II)): if 1.0 United States
dollar (USD) buys 0.5 British pounds (GBP), 1.0 GBP buys 10.0 French francs (FRF24),
and 1.0 FRF buys 0.21 USD, then an arbitrage trader can start with 1.0 USD and buy
1.0 ⇥ 0.5 ⇥ 10.0 ⇥ 0.21 = 1.05 USD thus earning a profit of 5 percent. This problem is
actually a problem of finding a profitable cycle. It is akin to the problem of finding cycle
with Floyd-Warshall shown in this section. Solve this problem using Floyd-Warshall!

Exercise 4.5.3.3*: How to solve Some-Pairs Shortest Paths problem faster than O(V 3) if
the graph has non-negative weight edges and we only need Shortest Paths information from
K (1  K < V/(log V )) independent source vertices to V other vertices?

Exercise 4.5.3.4*: Show how to solve the APSP problem faster than O(V 3) if the weighted
graph can have some negative weight edges but it is sparse, i.e., E = O(V ).

4.5.4 APSP in Programming Contests

Various algorithms on weighted graphs discussed in Section 4.4: Dijkstra’s (two versions),
Bellman-Ford (or its SPFA improvement), plus one more algorithm in this section: Floyd-
Warshall can actually be used to solve the Single-Source Shortest Paths (SSSP) problem
discussed in the previous Section 4.4, but each with its own terms and conditions.

In order to help the readers in deciding which algorithm to choose depending on various
graph criteria, we present a Shortest Paths algorithm decision table within the context of

24At the moment (year 2020), France actually uses Euro as its currency.
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programming contest in Table 4.4. The terminologies used are as follows: ‘Best’ ! the
most suitable algorithm; ‘Ok’ ! a correct algorithm but not the best; ‘Bad’ ! a (very)
slow algorithm; ‘WA’ ! an incorrect algorithm; and ‘Overkill’ ! a correct algorithm but
unnecessary. Assumption: Max 100M operations in ⇡ 1s time limit, 1 test case only.

Graph BFS Dijkstra’s Bellman-Ford Floyd-Warshall
Criteria O(V + E) O((V +E) log V ) O(V E) O(V 3)
Max Size V + E  100M V + E  1M VE  100M V  450
Unweighted Best Ok Bad Bad in general
Weighted WA Best Ok Bad in general
Negative weight WA Modified Ok Ok Bad in general
Negative cycle Cannot detect Cannot detect Can detect Can detect
Small graph WA if weighted Overkill Overkill Best

Table 4.4: Shortest Paths Algorithm Decision Table

From Table 4.4, we can see that when the given weighted graph is small (V  450)—which
happens quite often in the past (less so recently), it is clear from this section that the O(V 3)
Floyd-Warshall is the best way to go.

We can think of two possible reasons on why Floyd-Warshall algorithm can be used in
programming contests despite its high time complexity. The obvious reason is the fact that
the given shortest path problem requires shortest path information between many (up to all)
pairs, not just from one source to the rest.

The less obvious reason is because shortest paths is a sub-problem of the main, (much)
more complex, problem. To make the (hard) problem still doable during contest time,
the problem author purposely sets the input size to be small so that the shortest paths
sub-problem is solvable with the four liner Floyd-Warshall (e.g., UVa 10171, 10793, 11463,
Kattis - transportationplanning). A non-competitive programmer will take longer route to
deal with this sub-problem.

What’s Next?

We will discuss shortest path problems a few more time in this book, e.g., in Section 4.6.1
(shortest paths on Tree, on DAG), and in Book 2 (State-Space Search).

Profile of Algorithm Inventors

Richard Ernest Bellman (1920-1984) was an American applied mathematician. Other
than inventing the Bellman-Ford algorithm for finding shortest paths in graphs that have
negative weighted edges (and possibly negative weight cycle), Richard Bellman is more well
known by his invention of the Dynamic Programming technique in 1953.

Lester Randolph Ford, Jr. (1927-2017) was an American mathematician specializing in
network flow problems. Ford’s 1956 paper with Fulkerson on the max flow problem and the
Ford-Fulkerson method for solving it, established the max-flow min-cut theorem.

Robert W Floyd (1936-2001) was an eminent American computer scientist. Floyd’s con-
tributions include the design of Floyd’s algorithm [15] that finds all shortest paths in a
graph. Floyd worked closely with Donald Ervin Knuth, in particular as the major reviewer
for Knuth’s ‘The Art of Computer Programming’ book. Floyd also invented the faster O(n)
build heap routine from an unsorted array.
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Programming Exercises for Floyd-Warshall algorithm:

a. Floyd-Warshall Standard Application (for APSP or SSSP on small graph)

1. Entry Level: UVa 00821 - Page Hopping * (LA 5221 - WorldFinals
Orlando00; one of the easiest ICPC WorldFinals problem)

2. UVa 01247 - Interstar Transport * (LA 4524 - Hsinchu09; Floyd-Warshall
with modification: prefer shortest path with less intermediate vertices)

3. UVa 10354 - Avoiding Your Boss * (find and remove edges involved in
boss’s shortest paths; re-run shortest paths from home to market)

4. UVa 11463 - Commandos * (solution is easy with APSP information)

5. Kattis - allpairspath * (basic Floyd-Warshall; tricky negative cycle checks)

6. Kattis - importspaghetti * (smallest cycle; print path by breaking the self-loop
into i - other vertex j - i)

7. Kattis - transportationplanning * (APSP; FW; for each unused edge, use it
and see how much distance is reduced; get minimum; O(n4))

Extra UVa: 00341, 00567, 01233 10171, 10525, 10724, 10793, 10803, 10947,
11015, 12319, 13249.

Extra Kattis: hotels, slowleak.

b. Variants

1. Entry Level: UVa 01056 - Degrees of ... * (LA 3569 - WorldFinals
SanAntonio06; finding diameter of a small graph with Floyd-Warshall)

2. UVa 00869 - Airline Comparison * (run Warshall’s 2x on di↵erent graph;
compare the two Adjacency Matrices)

3. UVa 10342 - Always Late * (Floyd-Warshall to get APSP values; to get
the second best shortest path, try to make a single mistake)

4. UVa 10987 - Antifloyd * (creative usage of Floyd-Warshall algorithm; if
we can detour without increasing cost, then delete the direct edge)

5. Kattis - arbitrage * (arbitrage problem; similar to UVa 00104 and 00436)

6. Kattis - kastenlauf * (n  100; Warshall’s transitive closure problem)

7. Kattis - secretchamber * (LA 8047 - WorldFinals RapidCity17; Warshall’s
transitive closure; also available at UVa 01757 - Secret Chamber ...)

Extra UVa: 00104, 00125, 00186, 00274, 00334, 00436, 00925, 01198, 10246,
10331, 10436, 11047.

Extra Kattis: assembly, isahasa.

Also see: Floyd-Warshall used as sub-routine of more complex problems in
Book 2 (section about Problem Decomposition).

Profile of Algorithm Inventor

Stephen Warshall (1935-2006) was a computer scientist who invented the transitive
closure algorithm, now known as Warshall’s algorithm [60]. This algorithm was later
named as Floyd-Warshall as Floyd independently invented essentially similar algorithm.
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4.6 Special Graphs

Some basic graph problems have simpler/faster polynomial algorithms if the given graph is
special. Based on our experience, we have identified the following four25 special graphs that
commonly appear in programming contests (in decreasing estimated frequency): Directed
Acyclic Graph (DAG), Tree, Bipartite Graph, and Eulerian Graph. Problem au-
thors may force the contestants to use specialized algorithms for these special graphs by
giving a large input size to judge a correct algorithm for general graph as Time Limit Ex-
ceeded (TLE) (see a survey by [17]). In this section, we discuss some popular graph problems
on these special graphs (see Figure 4.28)—many of which have been discussed earlier on gen-
eral graphs. Note that at the time of writing (year 2020), all four special graphs discussed
in this section are included in the IOI syllabus [16].

Figure 4.28: Special Graphs (L-to-R): DAG, Tree, Bipartite Graph, Eulerian Graph

4.6.1 Directed Acyclic Graph

A Directed Acyclic Graph (DAG) is a special graph with the following characteristics: di-
rected and has no cycle. DAG guarantees the absence of cycle by definition. This makes
problems that can be modeled as a DAG very suitable to be solved with Dynamic Program-
ming (DP) techniques (see Section 3.5). After all, a DP recurrence must be acyclic. We can
view DP states as vertices in an implicit DAG and the acyclic transitions between DP states
as directed edges of that implicit DAG. Topological sort of this DAG (see Section 4.2.6)
allows each overlapping sub-problem (subgraph of the DAG) to be processed just once.

(Single-Source) Shortest/Longest Paths on DAG

The Single-Source Shortest Paths (SSSP) problem becomes much simpler if the given graph
is a DAG. This is because a DAG has at least one topological order! We can use an O(V +E)
topological sort algorithm in Section 4.2.6 to find one such topological order, then relax the
outgoing edges of these vertices according to this order. The topological order will ensure
that if we have a vertex Y that has an incoming edge from a vertex X, then vertex Y is
relaxed after vertex X has obtained the correct shortest distance value. Thus, the shortest
distance value propagation is correct with just one O(V + E) linear pass! This is also the
essence of the Dynamic Programming (DP) principle to avoid re-computation of overlapping
sub-problems in Section 3.5. When we compute bottom-up DP, we essentially fill the DP
table using the topological order of the underlying implicit DAG of DP recurrences.

The (Single-Source)26 Longest Paths problem is a problem of finding the longest (sim-
ple27) paths from a starting vertex s to other vertices. The decision version of this problem

25There are a few other rare special graphs (see Section 4.6.5).
26Actually this can be multi-sources, as we can start from any vertex with 0 incoming degree.
27On general graph with positive weighted edges, the longest path problem is ill-defined as one can take a
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is NP-complete on a general graph28. However, the problem is again easy if the graph has
no cycle, which is true in a DAG. The solution for the Longest Paths on DAG29 is just a
minor tweak from the DP solution for the SSSP on DAG, as shown above. One technique is
to multiply all edge weights by -1 and run the same SSSP solution as above. Finally, negate
the resulting values to get the actual results.

The Longest Paths on DAG has applications in project scheduling, e.g., UVa 00452 -
Project Scheduling about Project Evaluation and Review Technique (PERT). We can model
sub projects dependency as a DAG and the time needed to complete a sub project as vertex
weight. The shortest possible time to finish the entire project is determined by the longest
path in this DAG (a.k.a. the critical path) that starts from any vertex (sub project) with
0 incoming degree. See Figure 4.29 for an example with 6 sub projects, their estimated
completion time units, and their dependencies. The longest path 0 ! 1 ! 2 ! 4 ! 5 with
16 time units determines the shortest possible time to finish the whole project. In order to
achieve this, all sub projects along the longest (critical) path must be on time.

Figure 4.29: The Longest Path on this DAG

Counting Paths in DAG

Abridged problem description of UVa 00988 - Many paths, one destination: In life, one has
many paths to choose, leading to many di↵erent lives. Enumerate how many di↵erent lives
one can live, given a specific set of choices at each point in time. One is given a list of events,
and a number of choices that can be selected, for each event. The objective is to count how
many ways to go from the event that started it all (birth, index 0) to an event where one
has no further choices (that is, death, index n).

Figure 4.30: Example of Counting Paths in DAG - Bottom-Up

positive cycle and use that cycle to create an infinitely long path. This is the same issue as the negative cycle
in shortest path problem. That is why for general graph, we use the term: ‘longest simple path problem’.
All paths in DAG are simple by definition so we can just use the term ‘longest path problem’.

28The decision version of this problem asks if the general graph has a simple path of total weight � k.
29The LIS problem in Section 3.5.2 can also be modeled as finding the Longest Paths on implicit DAG.

250



CHAPTER 4. GRAPH c� Steven, Felix, Suhendry

Clearly the underlying graph of the problem above is a DAG as one can move forward in
time, but cannot go backward. The number of such paths can be found easily by computing
one (any) topological order in O(V +E) (in this problem, vertex 0/birth will always be the
first in the topological order and the vertex n/death will always be the last in the topological
order). We start by setting num paths[0] = 1. Then, we process the remaining vertices
one by one according to the topological order. When processing a vertex u, we update each
neighbor v of u by setting num paths[v] += num paths[u]. After such O(V + E) steps,
we will know the number of paths in num paths[n]. Figure 4.30 shows an example with 9
events and eventually 6 di↵erent possible life scenarios.

Bottom-Up versus Top-Down Implementations

Before we continue, we want to remark that all three solutions for shortest/longest/counting
paths on/in DAG above are Bottom-Up DP solutions. We start from known base case(s)
(the source vertex/vertices) and then we use topological order of the DAG to propagate the
correct information to neighboring vertices without ever needing to backtrack.

We have seen in Section 3.5 that DP can also be written in Top-Down fashion. Using
UVa 00988 as an illustration, we can also write the DP solution as follows: let numPaths(i)
be the number of paths starting from vertex i to destination n. We can write the solution
using these Complete Search recurrence relations:

1. numPaths(n) = 1 // at destination n, there is only one possible path
2. numPaths(i) =

P
j numPaths(j), 8j adjacent to i

To avoid re-computations, we memoize the number of paths for each vertex i. There are
O(V ) distinct vertices (states) and each vertex is only processed once. There are O(E) edges
and each edge is also visited at most once. Therefore the time complexity of this Top-Down
approach is also O(V + E), same as the Bottom-Up approach shown earlier. Figure 4.31
shows the similar DAG but the values are computed from destination to source (follow the
dotted back arrows). Compare this Figure 4.31 with the previous Figure 4.30 where the
values are computed from source to destination.

Figure 4.31: Example of Counting Paths in DAG - Top-Down

Converting General Graph to DAG

In the more challenging contest problems, the given graph in the problem statement is not
an explicit DAG. However, after further understanding, the given graph can be modeled as
a DAG if we add one (or more) parameter(s). Once you have the DAG, the next step is
to apply Dynamic Programming technique (either Top-Down or Bottom-Up). We illustrate
this concept with an example problem.
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SPOJ FISHER - Fishmonger

Abridged problem statement: Given the number of cities 3  n  50, available time 1  t 
1000, and two n ⇥ n matrices (one gives travel times and another gives tolls between two
cities), choose a route from the port city (vertex 0) in such a way that the fishmonger has to
pay as little tolls as possible to arrive at the market city (vertex n-1) within a certain time
t. The fishmonger does not have to visit all cities. Output two information: The total tolls
that is actually used and the actual traveling time. See Figure 4.32—left, for the original
input graph of this problem.

Notice that there are two potentially conflicting requirements in this problem. The first
requirement is to minimize tolls along the route. The second requirement is to ensure that
the fishmonger arrive in the market city within allocated time, which may cause him to pay
higher tolls in some part along the path. The second requirement is a hard constraint for
this problem. That is, we must satisfy it, otherwise we do not have a solution.

Figure 4.32: The Given General Graph (left) is Converted to DAG

Greedy SSSP algorithm like Dijkstra’s (see Section 4.4.3)—on its pure form—does not work
for this problem. Picking a path with the shortest travel time to help the fishmonger to
arrive at market city n-1 using time  t may not lead to the smallest possible tolls. Picking
path with the cheapest tolls may not ensure that the fishmonger arrives at market city n-1
using time  t. These two requirements are not independent!

However, if we attach a parameter: t left (time left) to each vertex, then the given
graph turns into a DAG as shown in Figure 4.32—right. We start with a vertex (port, t)
in the DAG. Every time the fishmonger moves from a current city cur to another city X,
we move to a modified vertex (X, t left-travelTime[cur][X]) in the DAG via edge with
weight toll[cur][X]. As time is a diminishing resource, we will never encounter a cyclic
situation. We can then use this (Top-Down) DP recurrence: dp(cur, t left) to find the
shortest path (in terms of total tolls paid) on this DAG. The answer can be found by calling
dp(0, t). The C++ code of dp(cur, t left) is shown in the next page.

Notice that by using Top-Down DP, we do not have to explicitly build the DAG and
compute the required topological order. The recursion will do these steps for us. There are
only O(nt) distinct states (notice that the memo table is a pair object). Each state can be
computed in O(n). The overall time complexity is thus O(n2t)—do-able.
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ii dp(int cur, int t_left) { // returns a pair
if (t_left < 0) return {INF, INF}; // invalid state, prune
if (cur == n-1) return {0, 0}; // at market
if (memo[cur][t_left] != {-1, -1}) return memo[cur][t_left];
ii ans = {INF, INF};
for (int X = 0; X < n; ++X)

if (cur != X) { // go to another city
auto &[tollpaid, timeneeded] = dp(X, t_left-travelTime[cur][X]);
if (tollpaid+toll[cur][X] < ans.first) { // pick the min cost

ans.first = tollpaid+toll[cur][X];
ans.second = timeneeded+travelTime[cur][X];

}
}

return memo[cur][t_left] = ans; // store the answer
}

Section 3.5—Revisited

Here, we want to re-highlight to the readers the strong linkage between DP techniques shown
in Section 3.5 and algorithms on DAG. Notice that all programming exercises about short-
est/longest/counting paths on/in DAG (or on general graph that is converted to DAG by
some graph modeling/transformation) can also be classified under DP category. Often when
we have a problem with DP solution that ‘minimizes this’, ‘maximizes that’, or ‘counts some-
thing’, that DP solution actually computes the shortest, the longest, or count the number
of paths on/in the (usually implicit) DP recurrence DAG of that problem, respectively.

Figure 4.33: Coin-Change as Shortest Paths on DAG

We now invite the readers to revisit some DP problems that we have seen earlier in Section
3.5 with this likely new viewpoint (viewing DP as algorithms on DAG is not commonly
found in other Computer Science textbooks as of year 2020). As a start, we revisit the
classic Coin-Change problem. Figure 4.33 shows the same test case used in example 1 of
Coin-Change subsection in Section 3.5.2. There are n = 2 coin denominations: {1, 5}.
The target amount is V = 10. We can model each vertex as the current value. Each vertex
v has n = 2 unweighted edges that goes to vertex v-1 and v-5 in this test case, unless if it
causes the index to go negative. Notice that the graph is a DAG and some states (highlighted
with dotted circles) are overlapping (have more than one incoming edges). Now, we can solve
this problem by finding the shortest path on this DAG from source V = 10 to target V = 0.
The easiest topological order is to process the vertices in reverse sorted order, i.e., {10, 9, 8,
. . . , 1, 0} is a valid topological order. We can definitely use the O(V +E) shortest paths on
DAG solution. However, since the graph is unweighted, we can also use the O(V +E) BFS
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to solve this problem (using Dijkstra’s is also possible but overkill). The path: 10 ! 5 ! 0
is the shortest with total weight = 2 (or 2 coins needed). Note that for this test case, a
greedy solution for Coin-Change happens to also pick the same path: 10 ! 5 ! 0.

Figure 4.34: 0-1 Knapsack as Longest Paths on DAG

Next, let’s revisit the classic 0-1 Knapsack Problem. This time we use this test case:
n = 5, V = {4, 2, 10, 1, 2},W = {12, 1, 4, 1, 2}, S = 15. We can model each vertex as a pair
of values (id, remW). Each vertex has at least one edge (id, remW) to (id+1, remW) that
corresponds to not taking a certain item id. Some vertices have another edge (id, remW) to
(id+1, remW-W[id]) if W[id]  remW that corresponds to taking a certain item id. Figure
4.34 shows some parts of the computation DAG of the standard 0-1 Knapsack Problem
using the test case above. Notice that some states can be visited with more than one path
(an overlapping sub-problem is highlighted with a dotted circle). Now, we can solve this
problem by finding the longest path on this DAG from the source (0, 15) to target (5,
any). The answer is the following path: (0, 15) ! (1, 15) ! (2, 14) ! (3, 10) !
(4, 9) ! (5, 7) with value 0 + 2 + 10 + 1 + 2 = 15.

Figure 4.35: UVa 10943 as Counting Paths in DAG

Let’s see one more example: The solution for UVa 10943 - How do you add? discussed in
Section 3.5.3. If we draw the DAG of this test case: n = 3, K = 4, then we have a DAG as
shown in Figure 4.35. There are overlapping sub-problems highlighted with dotted circles.
If we count the number of paths in this DAG, we will indeed find the answer = 20 paths.
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Exercise 4.6.1.1: Earlier in Section 3.5.2, we have defined the basic Coin-Change problem.
Now let’s extend it a bit into the following: Given a target amount V cents and a list of
denominations for n coins, i.e., we have coinValue[i] (in cents) and weight[i] (in grams)
for coin types i 2 [0..n-1], what is the minimum total weight of coins that we must use
to represent V ? Assume that 1  n  1000, 1  V  10 000, we cannot have partial total
value less than 0 or larger than V , and we have unlimited supply of coins of any type. The
basic Coin-Change discussed in Section 3.5.2 has positive integers for coinValue[i] and
all ones for weight[i], i.e., we are only interested to find the minimum number of coins as
their weights are identical. Let’s call this basic version as problem CC1. Now, how to solve
these other variants30 of that basic Coin-Change problem?

1. CC2: Let coinValue[i] be positive integers and weight[i] be positive integers.

2. CC3: Let coinValue[i] be positive integers and weight[i] be any integers.

3. CC4: Let coinValue[i] be any integers, including negative integer or even zero.
weight[i] remain all ones.

4. CC5: Let coinValue[i] be any integers and weight[i] be positive integers.
Hint: See the discussion at Exercise 4.4.5.1 too.

5. CC6: Let coinValue[i] be any integers and weight[i] be any integers.

Exercise 4.6.1.2: Draw the DAG for some small test cases of the other classical DP prob-
lems in Section 3.5, e.g., Traveling Salesman Problem (TSP) ⇡ shortest paths on the implicit
DAG, Longest Increasing Subsequence (LIS) ⇡ longest paths of the implicit DAG.

4.6.2 Tree

Tree is a special graph with the following characteristics: it has E = V -1 (any O(V + E)
algorithm on tree is O(V )), it has no cycle, it is connected, and there exists one unique path
for any pair of vertices. Adding one more edge to a tree forms a cycle (called Pseudotree).
Removing any existing edge from a tree disconnects the tree.

Tree Traversal

In Section 4.2.2 and 4.2.3, we have seen O(V + E) DFS and BFS algorithms for traversing
a general graph. If the given graph is a rooted binary tree, there are simpler tree traversal
algorithms like pre-order, in-order, and post-order traversals (note: level-order traversal is
essentially BFS). There is no major time speedup as these tree traversal algorithms also run
in O(V ), but the code are simpler. Their pseudo-codes are shown below:

pre-order(v): in-order(v): post-order(v):
visit(v) in-order(left(v)) post-order(left(v))
pre-order(left(v)) visit(v) post-order(right(v))
pre-order(right(v)) in-order(right(v)) visit(v)

30This idea is contributed by a Competitive Programming Book reader: Amit Agarwal.
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Finding Articulation Points and Bridges in Tree

In Section 4.2.10, we have seen O(V + E) Tarjan’s DFS algorithm for finding articulation
points and bridges of a graph. But if the given graph is a tree, the problem becomes simpler:
all edges on a tree are bridges and all internal vertices (degree > 1) are articulation points
(see Figure 4.5—left). This is still O(V ) as we have to scan the tree to count the number of
internal vertices, but the code is simpler.

Single-Source Shortest Paths on Weighted Tree

In Sections 4.4.3 and 4.4.4, we have seen two general purpose algorithms (O((V +E) log V )
Dijkstra’s and O(V E) Bellman-Ford’s) for solving the SSSP problem on a weighted graph.
But if the given graph is a weighted tree, the SSSP problem becomes simpler : any O(V )
graph traversal algorithm, i.e., BFS or DFS, can be used to solve this problem. There is
only one unique path between any two vertices in a tree, so we simply traverse the tree to
find the unique path connecting the two vertices. The shortest path weight between these
two vertices is basically the sum of edge weights of this unique path (e.g., from vertex 5 to
vertex 3 in Figure 4.36—A, the unique path is 5->0->1->3 with weight 4+2+9 = 15).

All-Pairs Shortest Paths on Weighted Tree

In Section 4.5, we have seen a general purpose algorithm (O(V 3) Floyd-Warshall) for solving
the APSP problem on a weighted graph. But if the given graph is a weighted tree, the APSP
problem becomes simpler : repeat the SSSP on weighted tree V times, setting each vertex
as the source vertex one by one. The overall time complexity is O(V ⇥ V ) = O(V 2).

Diameter of a Weighted Tree

Diameter of a graph is with greatest ‘shortest path length’ between any pair of vertices in
the graph. For general graph, we need O(V 3) Floyd-Warshall algorithm discussed in Section
4.5 plus another O(V 2) all-pairs check to compute the diameter. However, if the given graph
is a weighted tree, the problem becomes simpler. We only need two O(V ) traversals: do
DFS/BFS from any vertex s to find the furthest vertex x (e.g., from vertex s=1 to vertex
x=2 in Figure 4.36—B1), then do DFS/BFS one more time from vertex x to get the furthest
vertex y from x. The length of the unique path along x to y is the diameter of that tree
(e.g., path x=2->3->1->0->y=5 with length 20 in Figure 4.36—B2).

Figure 4.36: A: SSSP (Part of APSP); B1-B2: Diameter of Tree
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Exercise 4.6.2.1*: Given the inorder and preorder traversal of a rooted Binary Search
Tree (BST) T containing n vertices, write a recursive pseudo-code to output the postorder
traversal of that BST. What is the time complexity of your best algorithm?

Exercise 4.6.2.2*: In a tree, there is no non-trivial cycle involving 3 or more vertices.
However, there can still be trivial cycles involving bidirectional edges connecting a vertex
with its child(ren). Is there an easier way to implement DFS/BFS traversal on a tree without
using the Boolean visited flag of size n vertices?

Exercise 4.6.2.3*: There is an even faster solution than O(V 2) for the All-Pairs Shortest
Paths problem on Weighted Tree. It uses LCA. How?

Exercise 4.6.2.4*: Prove the correctness of the two DFS/BFS algorithm for finding diam-
eter of a Weighted Tree above!

4.6.3 Bipartite Graph

Recall that Bipartite Graph is a special graph with the following characteristics: the set
of vertices V can be partitioned into two disjoint sets V1 and V2 and all undirected edges
(u, v) 2 E have the property that u 2 V1 and v 2 V2. This makes a Bipartite Graph free
from odd-length cycle. Note that a Tree is also a Bipartite Graph!

Max Cardinality Bipartite Matching (MCBM)

Abridged problem description of Topcoder Open 2009 Qualifying 1 [28]: Given a list of
numbers N , return a list of all the elements in N that can be paired with N [0] successfully
as part of a complete prime pairing, sorted in ascending order. Complete prime pairing
means that each element a in N is paired to a unique other element b in N such that a+ b
is prime.

For example: Given a list of numbers N = {1, 4, 7, 10, 11, 12}, the answer is {4, 10}. This
is because pairing N [0] = 1 with 4 results in a prime pair and the other four items can also
form two prime pairs (7 + 10 = 17 and 11 + 12 = 23). Similar situation by pairing N [0] = 1
with 10, i.e., 1 + 10 = 11 is a prime pair and we also have two other prime pairs (4 + 7 = 11
and 11 + 12 = 23). We cannot pair N [0] = 1 with any other item in N . For example, if we
pair N [0] = 1 with 12, we have a prime pair but there will be no way to pair the remaining
4 numbers to form 2 more prime pairs.

Constraints: list N contains an even number of elements ([2..50]). Each element of N
will be between [1..1000]. Each element of N will be distinct.

Although this problem involves prime numbers, it is not a pure math problem as the
elements of N are not more than 1K—there are not too many primes below 1000 (only 168
primes). The issue is that we cannot do Complete Search pairings as there are 49 possibilities
for the first pair (that has to be paired with N [0]), 48C2 for the second pair, . . . , until 2C2

for the last pair. DP with bitmask technique (that will be discussed in Book 2) is also not
usable because 250 is too big.

The key to solve this problem is to realize that this pairing (matching) is done on a
Bipartite Graph! To get a prime number in this problem (where all elements of N are
distinct), we need to sum 1 odd + 1 even, because 1 odd + 1 odd (or 1 even + 1 even)
produces an even number (which is greater than two and not prime). Thus we can split
odd/even numbers to set1/set2 and add edge i ! j if set1[i] + set2[j] is prime, see
Figure 4.37—left.
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Figure 4.37: Bipartite Matching problem

After we build this Bipartite Graph, the solution is trivial: if the sizes of set1 and set2
are di↵erent, a complete pairing is not possible. Otherwise, if the size of both sets are n/2,
try to match set1[0] with set2[k] for k = [0..n/2-1] and do Max Cardinality Bipartite
Matching (MCBM) for the rest (MCBM is one of the most common applications involving
Bipartite Graph). If we obtain n/2-1 more matchings, add set2[k] to the answer. For this
test case, the answer is {4, 10} (see Figure 4.37—middle and right).

Augmenting Path Algorithm for MCBM

To solve the MCBM problem, one way is to use the specialized and easy to implement
O(V E) augmenting path algorithm. With its implementation handy, all the MCBM prob-
lems, including other graph problems that require MCBM—like the Max Independent Set in
Bipartite Graph, Min Vertex Cover in Bipartite Graph, and Min Path Cover on DAG (that
will be discussed in Book 2)—can be easily solved.

An augmenting path is a path that starts from a free (unmatched) vertex on the left set
of the Bipartite Graph, alternates between a free (unmatched) edge (now on the right set),
a matched edge (now on the left set again), a free edge, . . . until the path finally arrives on
a free vertex on the right set of the Bipartite Graph. A lemma by Claude Berge in 1957
states that a matching M in graph G is maximum (has the max possible number of edges)
if and only if there are no more augmenting paths in G. This augmenting path algorithm is
a direct implementation of Berge’s lemma: find and eliminate augmenting paths.

Now let’s take a look at a simple Bipartite Graph in Figure 4.38 with n and m vertices
on the left set and the right set, respectively. Vertices of the left set are numbered from
[1..n] and vertices of the right set are numbered from [n+1..n+m]. This algorithm tries
to find and eliminate augmenting paths starting from free vertices on the left set.

We start with a free vertex 1. In Figure 4.38—A, we see that this algorithm will
‘wrongly31’ match vertex 1 with vertex 3 (rather than vertex 1 with vertex 4) as path 1-3 is
already a simple augmenting path. Both vertex 1 and vertex 3 are free vertices. By matching
vertex 1 and vertex 3, we have our first matching. Notice that after we match vertex 1 and
3, we are unable to find another matching.

In the next iteration (when we are in a free vertex 2), this algorithm now shows its full
strength by finding the following augmenting path that starts from a free vertex 2 on the
left, goes to vertex 3 via a free edge (2-3), goes to vertex 1 via a matched edge (3-1), and
finally goes to vertex 4 via a free edge again (1-4). Both vertex 2 and vertex 4 are free
vertices. Therefore, the augmenting path is 2-3-1-4 as seen in Figure 4.38—B and 4.38—C.

31We assume that the neighbors of a vertex are ordered based on increasing vertex number, i.e., from
vertex 1, we will visit vertex 3 first before vertex 4.
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Figure 4.38: Augmenting Path Algorithm

If we flip the edge status in this augmenting path, i.e., from ‘free to matched’ and ‘matched
to free’, we will get one more matching (and simultaneously ‘eliminate’ this augmenting
path). See Figure 4.38—C where we flip the status of edges along the augmenting path
2-3-1-4. The updated matching is reflected in Figure 4.38—D.

This algorithm will keep doing this process of finding augmenting paths and eliminating
them until there are no more augmenting paths. As the algorithm repeats O(E) DFS-like32

code V times, it runs in O(V E). The short implementation code is shown below.

vi match, vis; // global variables
vector<vi> AL;

int Aug(int L) {
if (vis[L]) return 0; // L visited, return 0
vis[L] = 1;
for (auto &R : AL[L])

if ((match[R] == -1) || Aug(match[R])) {
match[R] = L; // flip status
return 1; // found 1 matching

}
return 0; // no matching

}

// inside int main()
// build unweighted Bipartite Graph with directed edge left->right set
// that has V vertices and Vleft vertices on the left set
match.assign(V, -1);
int MCBM = 0;
for (int L = 0; L < Vleft; ++L) { // for each free vertices

vis.assign(Vleft, 0); // reset first
MCBM += Aug(L); // try to match L

}
cout << "Found " << MCBM << " matchings\n";

32To simplify the analysis, we assume that E > V in such Bipartite Graphs.
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Exercise 4.6.3.1*: List down common keywords that can be used to help contestants spot
a Bipartite Graph in the problem statement! e.g., odd-even, male-female, etc. Also take
note which programming contest problems have such keywords.

Exercise 4.6.3.2*: Is it good for the MCBM algorithm shown in this section if we randomize
the vertex order in Adjacency List instead of keeping it ordered based on increasing vertex
number as usual?

We have provided the animation of several Unweighted MCBM algorithms in VisuAlgo
including variants that are better than the simple Augmenting Path Algorithm presented
in this section33. Use it to further strengthen your understanding of this algorithm by
providing your own input graph (undirected unweighted Bipartite Graph) and see the MCBM
algorithm being animated live on that particular input graph. The URL for the MCBM
algorithm visualization and the source code examples are shown below.

Visualization: https://visualgo.net/en/matching

Source code: ch4/mcbm.cpp|java|py|ml

4.6.4 Eulerian Graph

An Eulerian path34 in a graph is a trail35 which traverses each edge in the graph exactly
once. If such trail is a closed trail (i.e., starting and ending at the same vertex), then it is
also called an Eulerian tour. A graph is considered as Eulerian (Eulerian graph) if it has an
Eulerian tour.

A similar concept to Eulerian tour is the Hamiltonian tour, a path in a graph which visits
each vertex exactly once. Even though they look similar, finding an Eulerian tour is much
easier than finding a Hamiltonian tour which has been proven to be NP-hard (more details
in Book 2). On the other hand, finding an Eulerian tour is P.

Figure 4.39: Königsberg bridges problem and its corresponding graph representation.

Eulerian graph is one of the first results in graph theory obtained by Leonhard Euler in 1736
while solving the Königsberg bridges problem (see Figure 4.39). The problem asks whether
all the seven bridges in the city of Königsberg (now Kaliningrad, Russia) can be traversed
in a single trip without passing through any bridge more than once. Euler proved that there
is no such trail exists in this problem.

33These better algorithms will be discussed in Book 2.
34Although the name is Eulerian path, it actually is a trail in graph theory.
35A trail in the graph is similar to a path but it may have repeating vertices and no repeating edges, e.g.,

1� 2� 5� 3� 2� 4 where vertex 2 is visited twice in this walk of 5 di↵erent edges; on the other hand, the
common definition of path does not allow any vertex to be repeated.
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Checking an Eulerian Graph

An undirected graph is Eulerian if and only if: (1) it is connected, and (2) all the vertices have
an even degree. The first requirement is obvious as there cannot be a trail that consists of all
edges if the graph is disconnected. There are several ways to prove the second requirement.
The idea is that a closed trail from a vertex u requires an even number of edges adjacent to
vertex u, i.e., for each edge used from vertex u to other vertices, another edge is required
to bring back the trail into vertex u. If all the vertices except exactly two vertices have an
even degree, then the graph has an Eulerian path which starts at one of the two odd-degree
vertices and ends at the other.

For a directed graph, then each vertex should have the same number of incoming and
outgoing edges (in-degree = out-degree) to be an Eulerian graph. For the connectivity
requirement, a directed Eulerian graph should be connected in one Strongly Connected
Component (SCC). However, there is no need to compute the SCC (see Section 4.2.10) for
the given graph. Instead, it is su�cient to check the connectivity by assuming all edges are
undirected, i.e., vertex u and v are connected if there is an edge u ! v or v ! u. If the
graph is “connected” and the requirement for the vertices’ degree is satisfied, then the graph
must be connected in one SCC. Thus, a directed graph is an Eulerian graph if and only if it
is “connected” (assuming each edge is undirected) and each vertex has the same number of
incoming and outgoing edges. Note that if there is exactly one vertex u which has one extra
outgoing edge and exactly one vertex v which has one extra incoming edge, then the graph
has an Eulerian path from u to v.

Finding an Eulerian Path

While checking whether a graph is Eulerian is easy, finding the Eulerian tour requires more
work than simply checking the graph’s connectivity and vertices’ degree. There are two
popular algorithms to find the Eulerian path, i.e., Fleury’s algorithm and the more e�cient
Hierholzer’s algorithm.

Fleury’s algorithm starts at an arbitrary vertex. In each step, it chooses the next edge to
be traversed whose removal would not disconnect the graph. If there is no such edge, then it
chooses that last remaining edge from that vertex. This algorithm requires us to know the
bridges (see Section 4.2.9) every time an edge being traversed (removed from the remaining
graph). Thus, the total time complexity of this algorithm is O(|E|2).

Hierholzer’s algorithm is more e�cient compared to Fleury’s algorithm. Starting from
any arbitrary vertex u, find any trail through the graph until it comes back to vertex u. If
the graph is Eulerian, then any (random) trail must be able to end at the starting vertex
since all vertices have an even degree (i.e., for each outgoing, there is one incoming, thus, we
cannot get stuck in some vertices other than the starting vertex). So, we have found a closed
trail, but such a trail might not contain all the edges yet. Whenever there is a vertex v in
the existing trail which has incident edges which are not yet part of the trail, find another
closed trail starting from v in the remaining graph (in other words, expand the vertex), then
merge the trail found into the existing trail. This method will exhaust all the edges in the
graph if the graph is connected, and the resulting trail will be an Eulerian tour. The total
time complexity of this algorithm is O(|E|).

Figure 4.40 shows a running example of Hierholzer’s algorithm on a directed graph. The
first closed trail found in this example is ABCDA. In this closed trail, vertex A and C still have
incident edges which are not yet part of the closed trail, i.e., FA, AG, CE, and FC. Hierholzer’s
algorithm does not decide which vertex (A or C) to be expanded in such a case (any vertex
will do); it highly depends on the implementation. One common implementation of the
Hierholzer’s algorithm is simply expanding the last vertex in the existing closed trail which
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still has incident edges (vertex A in this example). Expand vertex A so we will find another
closed trail, AGFA. Merge this trail with the existing trail into ABCDAGFA, i.e., replace (one)
A which we expand in ABCDA with AFGA. After this, vertex C and F still have incident edges
which are not yet part of the closed trail. Expand vertex F and we will find another closed
trail, FCEF, then merge this into ABCDAGFCEFA. After this, there is no vertex which still has
incident edge which is not part of the closed trail, thus, the algorithm terminates and the
closed trail is an Eulerian tour.

Figure 4.40: Example of Hierholzer’s algorithm. The underlined characters represent vertices
which still have incident edges which are not yet part of the trail.

The following is an iterative implementation of Hierholzer’s algorithm to find an Eulerian
path in a directed graph using two stacks. One stack is used to store the current trail (st)
while the other is to store the output trail (res). The top vertex of st is push into res if
that vertex is already exhausted. The resulting trail by this method will be in a reversed
order, so reversal might be needed36.

int N;
vector<vi> AL; // Directed graph

vi hierholzer(int s) {
vi ans, idx(N, 0), st;
st.push_back(s);
while (!st.empty()) {

int u = st.back();
if (idx[u] < (int)AL[u].size()) { // still has neighbor

st.push_back(AL[u][idx[u]]);
++idx[u];

}
else {

ans.push_back(u);
st.pop_back();

}
}
reverse(ans.begin(), ans.end());
return ans;

}

Source code: ch4/hierholzer.cpp|java|py

36Reversal only matters if we want an Eulerian path which starts from the start vertex.
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Note that this implementation is meant for directed graphs. In the case of undirected graphs,
we need to flag edges which have been used during the traversal to avoid using a bidirectional
edge twice, e.g., with map or set. Alternatively, we can represent the graph using list with
references to each bidirectional edge so that any reversed edge can be erased in O(1). One
interesting thing in this implementation is that both ans and st contain valid trails at any
time, thus, for example, it can be modified to find a trail of a specific length.

4.6.5 Special Graphs in Programming Contests

Of the four special graphs mentioned in this Section 4.6. DAGs and Trees are more popular,
especially for IOI contestants. It is not rare that Dynamic Programming (DP) on DAG
or (rooted) Tree appears as an IOI task. As these DP variants (typically) have e�cient
solutions, the input sizes for them are usually large.

The next most popular special graph is the Bipartite Graph. This special graph is suitable
for Network Flow and Bipartite Matching problems that will be discussed in Book 2. We
reckon that contestants must master the usage of the simpler augmenting path algorithm
for solving the Max Cardinality Bipartite Matching (MCBM) problem. We have seen in this
section and later in the special cases of certain NP-hard/complete problems (see Book 2)
that several graph problems are somehow reducible to MCBM. ICPC contestants should be
familiar with Bipartite Graph on top of DAG and Tree. IOI contestants also need to also
study Bipartite Graph as it is inside IOI syllabus [16].

The other special graph discussed in this chapter—the Eulerian Graph—does not have
too many contest problems involving it the last two decades: 2000-2020. However, when
Eulerian Graph-related problem appears, it can be a decider problem.

There are other possible special graphs (see Figure 4.41), but we rarely encounter them,
e.g., Planar Graph (Kuratowski’s Theorem: does not have K5 or K3,3 as its subgraph; 4
colorable; E = O(V )); Complete Graph Kn (the most dense graph; connected; and also a
clique with diameter 1); Forest of Paths; Star Graph; Acyclic graph plus 1 extra edge (e.g.,
Pseudoforest/Pseudotree), etc. When they appear, try to utilize their special properties to
speed up your algorithms.

Figure 4.41: A Few Other Special Graphs

Profile of Algorithm Inventor

Claude Berge (1926-2002) was a French mathematician, recognized as one of the modern
founders of combinatorics and graph theory. His main contribution that is included in this
book is Berge’s lemma, which states that a matching M in a graph G is maximum if and
only if there is no more augmenting path with respect to M in G.

263



4.6. SPECIAL GRAPHS c� Steven, Felix, Suhendry

Programming Exercises related to Special Graphs:

a. Shortest37/Longest Paths on DAG

1. Entry Level: Kattis - mravi * (reverse edge directions to change the input
tree into a DAG; find longest path from leaf that contains ant to root)

2. UVa 00452 - Project Scheduling * (longest paths on DAG)

3. UVa 10259 - Hippity Hopscotch * (longest paths on implicit DAG; DP)

4. UVa 10350 - Liftless Eme * (shortest paths; implicit DAG; DP)

5. Kattis - 246greaaat * (variation of Coin-Change problem; Dijkstra’s on
DAG; but avoid using Priority Queue)

6. Kattis - fibtour * (only 90 Fibonacci numbers not more than 1018; Longest-Path
on DAG problem; special case for first two Fibonacci numbers 1 ! 1)

7. Kattis - safepassage * (SSSP; implicit DAG; s: (cloak pos, bitmask); try all
ways to go back and forth between gate and dorm; report minimum)

Extra UVa: 00103, 10000, 10051, 10285.

Extra Kattis: baas, bowserpipes, excavatorexpedition, monopoly, savinguni-
verse.

Also see: Longest Increasing Subsequence (see Section 3.5.2) and the generic
Longest-Path problem (see Book 2).

b. DP, Counting Paths in DAG, Easier

1. Entry Level: UVa 00825 - Walking on the Safe Side * (counting paths
in grid (implicit DAG); DP; similar to UVa 00926 and 11067)

2. UVa 10544 - Numbering the Paths * (counting paths in implicit DAG)

3. UVa 11569 - Lovely Hint * (determine the length of one of the longest
paths and then count the number of such longest paths in DAG)

4. UVa 11957 - Checkers * (counting paths in implicit DAG; DP)

5. Kattis - robotsonagrid * (counting paths in grid (implicit DAG); DP)

6. Kattis - runningsteps * (LA 7360 - Greater NY15; s: (leg, l2, r2, l1, r1); t:
left/right leg 1/2 steps; use unordered map as memo table; use pruning)

7. Kattis - scenes * (s: (pos, ribbon left); t: try all possible heights; ignore the
flat scenes first and subtract those cases at the end)

Extra UVa: 00926, 00986, 00988, 10401, 10564, 10926, 11067, 11655.

Extra Kattis: compositions, helpfulcurrents, marypartitions.

Also see: DP, Counting Paths in DAG, Harder (see Book 2).

37SSSP on DAG problems can still be solved with the more general Dijkstra’s algorithm—in a slightly
slower (by O(log V ) factor) manner.
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c. Converting General Graph to DAG38

1. Entry Level: UVa 00590 - Always on the Run * (s: (pos, day left))

2. UVa 00907 - Winterim Backpack... * (s: (pos, night left))

3. UVa 10913 - Walking ... * (s: (r, c, neg left, stat); t: down/(left/right))

4. UVa 12875 - Concert Tour * (LA 6853 - Bangkok14; similar to UVa
10702; s: (cur store, cur concert); t: pick any next store for next concert)

5. Kattis - cardmagic * (s: (deck, tgt left); t: val 1 to K  tgt left)

6. Kattis - drinkresponsibly * (s: (cur drink, money left, u left); be careful with
precision errors; print solution)

7. Kattis - maximizingwinnings * (separate the maximizing and minimizing
problem; s: (cur room, turns left); t: go to other room or stay)

Extra UVa: 00607, 00757, 00910, 01025, 10201, 10271, 10543, 10681, 10702,
10874, 11307, 11487, 11545, 11782, 13122.

Extra Kattis: quantumsuperposition, shortestpath4.

Others: SPOJ FISHER - Fishmonger (s: (cur, t left)).

d. Tree

1. Entry Level: UVa 00536 - Tree Recovery * (reconstructing binary tree
from preorder and inorder binary tree traversal)

2. UVa 10805 - Cockroach Escape ... * (involving diameter of tree)

3. UVa 12347 - Binary Search Tree * (given pre-order traversal of a BST,
use BST property to get the BST; output the post-order traversal that BST)

4. UVa 12379 - Central Post O�ce * (find the diameter of tree first; we
only traverse the diameter once and we traverse the other edges twice)

5. Kattis - adjoin * (the key parts are finding tree diameter and its center (along
that diameter); also see UVa 11695)

6. Kattis - flight * (cut the worst edge along the tree diameter; link two centers;
also available at UVa 11695 - Flight Planning)

7. Kattis - tourists * (APSP on Tree (special requirements); LCA)

Extra UVa: 00112, 00115, 00122, 00548, 00615, 00699, 00712, 00839, 10308,
10459, 10701, 11131, 11234, 11615, 12186.

Extra Kattis: decisions, frozenrose, fulldepthmorningshow, kitten, mazemak-
ers, whostheboss.

38This category can also be classified as Dynamic Programming.
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e. Bipartite Graph

1. Entry Level: UVa 11138 - Nuts and Bolts * (a pure MCBM problem)

2. UVa 00670 - The Dog Task * (good MCBM problem modeling)

3. UVa 12668 - Attacking rooks * (LA 6525 - LatinAmerica13; split rows
and columns due to the presence of pawns, then run MCBM)

4. UVa 12644 - Vocabulary * (classic MCBM problem wrapped inside a
creative problem statement)

5. Kattis - bookclub * (check if perfect MCBM is possible)

6. Kattis - escapeplan * (left set: robots; right set: holes; 3 version of similar
Bipartite Graphs; MCBM)

7. Kattis - flippingcards * (left set: n card numbers; right set: 2*n picture num-
bers; possible if MCBM = n; need fast algorithm)

Extra UVa: 00663, 00753.

Extra Kattis: absurdistan3, elementarymath, gopher2, paintball, pianolessons,
superdoku.

Others: Topcoder Open 2009: Prime Pairs (MCBM).

Also see: Bipartite Graph Check (see Section 4.2.7), some Bipartite Flow
Graph (see Book 2), a few special cases of NP-hard/complete problems in-
volving Bipartite Graph (see Book 2).

f. Eulerian Graph

1. Entry Level: UVa 00291 - The House of Santa ... * (Euler tour on a
small graph; backtracking is su�cient)

2. UVa 10054 - The Necklace * (printing the Euler tour)

3. UVa 10203 - Snow Clearing * (the underlying graph is Euler graph)

4. UVa 10596 - Morning Walk * (Euler graph property check)

5. Kattis - catenyms * (Euler graph property check; 26 vertices; directed non
simple graph; printing the Euler tour in lexicographic order)

6. Kattis - eulerianpath * (Euler graph property check; directed graph; printing
the Euler tour)

7. Kattis - railroad2 * (x-shaped level junctions have even degrees - ignore X;
y-shaped switches have degree 3 - Y has to be even)

Extra UVa: 00117, 00302, 10129.

Extra Kattis: grandopening.

Also see Chinese Postman Problem in Book 2.

Profile of Algorithm Inventors

Carl Hierholzer (1840-1871) was a German mathematician. He proved and give an algo-
rithm to find Eulerian trail of an Eulerian graph.

M. Fleury was a French scientist who gave alternative algorithm to find Eulerian trail (but
not as e�cient as Hierholzer’s).
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4.7 Solution to Non-Starred Exercises

Exercise 4.2.4.1: The minimum number of CCs is 1, when G is a connected graph. The
minimum number of edges E in this case must be at least V -1 (a tree is the smallest connected
graph that has E = V -1). The maximum number of CCs is V , when G contains V vertices
but no edge (E = 0).

Exercise 4.2.4.2: UFDS solution is trivial: start with V disjoint vertices. For each undi-
rected edge (u, v) in the graph, we call unionSet(u, v). The state of disjoint sets after
processing all edges represent the connected components. BFS solution is also trivial: simply
change dfs(u) to bfs(u) from source vertex u. Both run in O(V + E) as we assume that
UFDS operations are constant in competitive programming environment.

Exercise 4.2.6.1: One possible way is to modify the toposort(u) recursion into a recursive
backtracking variant (see Section 3.2.2). We reset the VISITED flag of vertex u back to
UNVISITED when we exit the recursion. This is an exponential (slow) algorithm.

Exercise 4.2.7.1: Proof by contradiction. Assume that an undirected graph is a Bipartite
Graph that has an odd (length) cycle. Let the odd cycle contains 2k+1 vertices for a certain
integer k that forms this path: v0 ! v1 ! v2 ! ... ! v2k�1 ! v2k ! v0. Now, we can put
v0 in the left set, v1 in the right set, ..., v2k on the left set again, but then we have an edge
(v2k, v0) that causes problem as v0 has been placed in the left set earlier ! contradiction.
Therefore, a Bipartite Graph has no odd cycle. This property can be important to solve
some problems involving Bipartite Graph.

Exercise 4.2.7.2: The number of edges in a Bipartite Graph of size V (let’s assume V is
even) is maximized if we able to partition the left and right set equally. This way, we have a
complete Bipartite Graph KV/2,V/2 with up to V

2 ⇥ V
2 = O(V 2) edges, i.e., a Bipartite Graph

can still be a dense graph.

Exercise 4.2.7.3: We use the proof from Exercise 4.2.7.1. A tree has no cycle to begin
with, so it will be a Bipartite Graph. A simple (constructive) partition is as follows: The
root, grandchildren (depth 2), grand-grand-grandchildren (depth 4), and so on will form the
left set. The children, grand-grandchildren (depth 3), and so on will form the right set.

Exercise 4.2.8.1: As we only modify O(V + E) DFS with a few more constant factor
checks, then cycleCheck also runs in O(V + E). However, if our intention is just to decide
if the given (directed) graph is cyclic or not, we can speed up cycleCheck a bit to O(V )
by declaring any input (directed) graph with E > V � 1 edges as cyclic and we only run
cycleCheck on small (directed) graph with E  V � 1 edges.

Exercise 4.2.8.2: Try this DAG G with V = 3 vertices and E = 3 edges = {0 ! 1, 1 ! 2,
0 ! 2}. If we don’t use the third DFS state EXPLORED, we will accidentally classify edge
0 ! 2 as a back edge while it is actually a forward/cross edge.

Exercise 4.2.10.1: Proof by contradiction. Assume that there exists a path from vertex u
to w and w to v where w is outside the SCC. From this, we can conclude that we can travel
from vertex w to any vertices in the SCC and from any vertices in the SCC to w. Therefore,
vertex w should be in the SCC. Contradiction. So there is no path between two vertices in
an SCC that ever leaves the SCC.

Exercise 4.3.2.1: The reason that this early termination is correct is because Kruskal’s
only take edges that will be part of the final MST. If Kruskal’s has taken V -1 edges, we can
be sure that these V -1 taken edges will not form a cycle and by definition it must form a tree
that already spans graph G. Another possible implementation using Union-Find Disjoint
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Sets data structure is to stop the Kruskal’s loop when the number of disjoint sets is already
down to one. Remember that we start Kruskal’s loop with initially V disjoint sets and every
edge that is taken by Kruskal’s reduces the number of disjoint sets by one. We can only do
so V -1 times before there is only one set left.

Exercise 4.4.3.1: It is OK, as the vertex information pair of vertex u is (dist[u], u).
The vertex number is unique, so the pairs are always recognized as di↵erent by C++ STL
set<ii> even though the shortest path distance values may not be unique.

Exercise 4.4.3.2: In Section 2.3.1, we have shown the way to reverse the default max heap
of C++ STL priority queue into a min heap by multiplying the sort keys with -1.

Exercise 4.4.3.3: The Modified Dijkstra’s algorithm performance will degenerate, as it will
process all inferior vertex information pairs (that should have been deleted earlier) instead
of skipping them immediately. But the Modified Dijkstra’s algorithm should still remain
correct, as inferior vertex information pairs will not cause any successful edge relaxation.

Exercise 4.4.5.1: No, we cannot use DP. The state and transition modeling outlined in
Section 4.4.3 creates a State-Space graph that is not a DAG. For example, we can start
from state (s, 0), add 1 unit of fuel at vertex s to reach state (s, 1), go to a neighbor vertex
y—suppose it is just 1 unit distance away—to reach state (y, 0), add 1 unit of fuel again at
vertex y to reach state (y, 1), and then return back to state (s, 0) (a cycle). This is a shortest
path problem on general weighted graph. We need to use Dijkstra’s algorithm.

Exercise 4.5.1.1: This is because we will add AM[i][k]+AM[k][j] which will overflow
if both AM[i][k] and AM[k][j] are near the MAX INT range, thus giving wrong answer
that is quite hard to debug. Note that memset(AM, 63, sizeof AM); will initialize values
1 061 109 567 – which is just above 1e9 but less than half of 231-1 – to the matrix AM.

Exercise 4.5.1.2: Floyd-Warshall works in graph with negative weight edges. For graph
with negative cycle, see Section 4.5.3 about ‘finding negative cycle’.

Exercise 4.5.3.1: Running Warshall’s algorithm directly on a graph with V  1000 will
result in TLE. Since the number of queries is low, we can a↵ord to run O(V + E) DFS per
query to check if vertex u and v are connected by a path. If the input graph is directed, we
can find the SCCs of the directed graphs first in O(V + E). If u and v belong to the same
SCC, then u will surely reach v. This can be tested with no additional cost. If SCC that
contains u has a directed edge to SCC that contains v, then u will also reach v. But the
connectivity check between di↵erent SCCs is much harder to check and we may as well just
use a normal DFS to get the answer.

Exercise 4.5.3.2: In Floyd-Warshall, replace addition with multiplication and set the main
diagonal to 1.0. Run Floyd-Warshall and check if the main diagonal > 1.0.

Exercise 4.6.1.1: The implications and the solutions are as follows:

1. CC2: The underlying State-space graph is a non-negative weighted DAG. We can use
DP (as it is a DAG) or the slightly slower (by O(log V ) factor) Dijkstra’s algorithm on
the implicit State-space graph.

2. CC3: The underlying State-space graph is a (potentially negative) weighted DAG. But
since it is a DAG, there will not be any negative weight cycle to worry about. We can
use DP or Modified Dijkstra’s algorithm on the implicit State-space graph.

3. CC4: The underlying State-space graph contains cycle (not a DAG). Therefore, we
cannot use DP. As weight[i] remain all ones, the underlying potentially cyclic State-
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space graph is unweighted. Hence we can use BFS on the implicit State-space graph
to solve this unweighted SSSP problem.

4. CC5: The underlying State-space graph is a potentially cyclic and non-negative weighted
graph. We cannot use DP (not a DAG). We cannot use BFS (not an unweighted
graph). We have to use Dijkstra’s algorithm (either version) on the implicit weighted
State-space graph. This variant has been discussed earlier in Exercise 4.4.5.1.

5. CC6: The underlying State-space graph is a potentially cyclic and potentially negative
weighted graph. We cannot use DP. We probably can only use Bellman Ford’s algo-
rithm if the underlying graph is small enough (E = n ⇥ V with 1  n  1000 and
1  V  10 000 is not small) and has no negative-weight cycle. Moreover, the problem
will be ill-defined if Bellman Ford’s detects that there is at least one negative weight
cycle in the underlying graph.

Exercise 4.6.1.2: The DAGs are as follows:

Figure 4.42: Recursion DAG of TSP with n = 5; Also See Figure 3.2

Figure 4.43: LIS as Longest Path of an Implicit DAG; Also See Figure 3.13
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4.8 Chapter Notes

We end this relatively long chapter by making a remark that this chapter has lots of algo-
rithms and algorithm inventors—the most in this book. This trend will likely increase in the
future, i.e., there will be more graph algorithms used in programming contests. However, we
have to warn the contestants that recent IOIs and ICPCs usually do not just ask contestants
to solve problems involving the pure form of these graph algorithms. New problems usually
require contestants to use creative graph modeling, use the special properties of the input
graph, or combine two or more algorithms or to combine an algorithm with some advanced
data structures, e.g., combining the longest path in DAG with Segment Tree data structure;
using SCC contraction of Directed Graph to transform the graph into DAG before solving
the actual problem on DAG; etc. Some of these harder forms of graph problems are discussed
in Book 2. We have shown several examples of such graph modeling skill in this chapter
which we hope you are able to appreciate and eventually make it yours.

This chapter, albeit already quite long, still omits many known graph algorithms and
graph problems that may be tested in ICPCs. Some of them will be discussed later,
namely: Network Flow39, Graph Matching, Bitonic Traveling Salesman Problem, Hopcroft-
Karp MCBM algorithm, Kuhn-Munkres (Hungarian) weighted MCBM algorithm, Edmonds’
Matching algorithm for general graph, NP-hard/complete graph problems, Tree/Euler graph
specific problems/algorithms, etc. We invite readers to continue studying these graph prob-
lems by continue reading this book.

If you want to increase your winning chance in ICPC, please spend some time to study
more graph algorithms/problems beyond40 this book. These harder graph problems rarely
appear in regional contests and if they are, they usually become the decider problems.
Harder graph problems are more likely to appear in the ICPC World Finals level.

However, we have good news for IOI contestants. We believe that most graph materials in
the IOI syllabus are already covered in this chapter that should give you reasonable partial
marks for IOI tasks involving graph. However, you still need to really master the basic
algorithms covered in this chapter and then improve your problem solving skills in applying
these basic algorithms to creative graph problems frequently posed in IOI in order to fully
solve the task.

Statistics of CP Editions 1st 2nd 3rd 4th
Number of Pages 35 49 70 78 (+11%)
Written Exercises 8 30 50 24+20*=44 (-12%)
Programming Exercises 173 230 248 431 (+74%)

The breakdown of the number of programming exercises from each section is shown below:

Section Title Appearance % in Chapter % in Book
4.2 Graph Traversal 130 ⇡ 30% ⇡ 3.8%
4.3 Minimum Spanning Tree 44 ⇡ 10% ⇡ 1.3%
4.4 Single-Source Shortest Paths 102 ⇡ 24% ⇡ 2.9%
4.5 All-Pairs Shortest Paths 42 ⇡ 10% ⇡ 1.2%
4.6 Special Graphs 113 ⇡ 26% ⇡ 3.3%

Total 431 ⇡ 12.5%

39In CP4, we move Network Flow section that was previously in this chapter (in CP3) to Book 2.
40Interested readers are welcome to explore Felix’s paper [19] that discusses maximum flow algorithm for

large graphs of 411 million vertices and 31 billion edges!
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End of Book 1

This is the end of Book 1 but not the end of CP4. Due to the significant increase of the
number of pages needed to write the updated content between CP3 (published in year 2013,
447 pages) and this CP4 (published in year 2020, 681 pages, ⇡ 50% more than CP3), we
have decided to split our book into two smaller books for the following practical reasons:

1. To reduce the thickness of each smaller book by approximately half (329/352 pages for
Book 1/2, respectively) as not many (economical) book bindings with over 500 pages
are su�ciently durable.

2. To have a cleaner separation of topics:

• Book 1 is targeted for beginners in Competitive Programming: high school stu-
dents/NOI/IOI contestants, freshman/sophomore level University students taking
basic data structures and algorithms courses/equivalent who may be interested
to start their first ICPC, or (fresh) graduates preparing for IT job interview at
top IT companies. We foresee that our first time readers will buy and read Book
1 first and may or may not continue with Book 2 depending on their needs and
future interests. Most of the IOI syllabus [16] are covered in Book 1.

• Book 2 is targeted for seasoned contestants in Competitive Programming, mostly
ICPC contestants, junior/senior level University students taking advanced algo-
rithms courses/equivalent. We assume that our Book 2 readers have mastered
Book 1 content as we will not repeat the earlier content in Book 2. Many mate-
rial in Book 2 are currently outside the IOI syllabus [16] as of year 2020 and thus
will not appear in the NOI/IOI.

3. Readers can save half of the book weight when they carry either Book 1 or Book 2
around. We make Book 1 content totally independent of Book 2 and we assume most
readers will move on to Book 2 only after mastering the contents of Book 1.

4. Readers gets ⇡ 50% money savings if they only need to study the contents of Book 1.

If you don’t purchase a copy of Book 2 together with this Book 1, please flip over to page
272 to see a preview of Book 2 and then decide for yourself on whether you want to continue
this exciting Competitive Programming journey.
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Preview of Book 2

Are you curious of what are in store if you continue your Competitive Programming journey
by reading Book 2? There are another 352 pages of material worth to be discovered.

Here are some preview:

1. In Chapter 5, we will learn mathematics-related problems and algorithms, e.g.,

(a) What are the prime factors of 142 391 208 960?

(b) What is the value of C(100000, 50000)%1000000007?

(c) What is the value of 72020%1000000007?

Answer1.(a).2
10
⇥3

4
⇥5⇥7

4
⇥11⇥13;(b).149033233;(c).403769496.

2. In Chapter 6, we will learn problems involving (very) long strings, e.g.,

(a) What is the Longest Repeated Substring in string “CGACATTACATTA”?

(b) What is the longest palindrome that you can make from “RACEF1CARFAST” by
deleting zero or more characters?

Answer2.(a).“ACATTA”;(b).“RACECAR”.

3. In Chapter 7, we will learn (computational) geometry problems and algorithms, e.g.,

(a) Given 3 points a(2, 2), o(2, 4), and b(4, 3), compute the angle aob in degrees!

(b) What is the perimeter and the area of polygon described by these 6 points that
are given counter-clockwise order: (1, 1), (3, 3), (9, 1), (12, 4), (9, 7), (1, 7)?

(c) What is the value of ⇡ ⇥
R 2

0 (e
�x2

+ 2 ·
p
x)2?

Answer3.(a).63.43degrees;(b).perimeter=31.64,area=49.00;(c).34.72.

4. In Chapter 8, we will learn several advanced topics.

(a) How many ways can you put 15 chess queens on an empty 15⇥ 15 chessboard so
that none of them attack each other?

(b) Given a set of integers S = {10, 77, 2328, 2894, 3117, 4210, 4943, 5690, 7048, 9512},
find any two non-empty, distinct subsets with equal sum!

Answer4.(a).2279184ways;(b).{3117,4210,4943}and{2328,2894,7048}.

5. In Chapter 9, we will learn several rare (hard) topics, e.g.,

(a) Give the smallest positive integer answer for the following mathematical puzzle:
“There are certain things whose number is unknown. If we count them by threes,
we have two left over; by fives, we have three left over; and by sevens, two are left
over. How many things are there?”.

(b) Show a way to put N = 100 000 chess queens on an N ⇥ N chess board so that
no queen attack each other!

Answer5.(a).23;(b).Thereisapatterntogeneratetherequiredsolution.
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[53] Steven Sol Skiena and Miguel Ángel Revilla. Programming Challenges. Springer, 2003.

275



BIBLIOGRAPHY c� Steven, Felix, Suhendry

[54] Wing-Kin Sung. Algorithms in Bioinformatics: A Practical Introduction. CRC Press
(Taylor & Francis Group), 1st edition, 2010.

[55] Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM Journal
on Computing, 1 (2):146–160, 1972.

[56] Je↵rey Trevers and Stanley Milgram. An Experimental Study of the Small World
Problem. Sociometry, 32 (4):425–443, 1969.

[57] Baylor University. International Collegiate Programming Contest.
https://icpc.baylor.edu/.

[58] Tom Verhoe↵. 20 Years of IOI Competition Tasks. Olympiads in Informatics, 3:149–166,
2009.

[59] Henry S. Warren. Hacker’s Delight. Pearson, 1st edition, 2003.

[60] Stephen Warshall. A theorem on Boolean matrices. Journal of the ACM, 9 (1):11–12,
1962.

276



Index

Abstract Data Type, 79
Ackermann Function, 99
ACM, 4
Adelson-Velskii, Georgii, 90
Adjacency List, 95
Adjacency Matrix, 94
Algorithm

Augmenting Path, 258
Bellman-Ford, 234
Bellman-Ford-Moore, 236
Breadth First Search, 197
Depth First Search, 195
Dijkstra’s, 227
Fleury’s, 261
Floyd-Warshall, 241
Held-Karp, 183
Hierholzer’s, 261
Kadane’s, 173
Kahn’s, 201
Kosaraju’s, 208
Kruskal’s, 215
Prim’s, 217
Shunting-yard, 73
SPFA, 236
Tarjan’s, 209
Warshall’s, 245

All-Pairs Shortest Paths, 241, 256
(Cheapest/Negative) Cycle, 245
Diameter of a Graph, 246
MiniMax and MaxiMin, 245
Printing the Shortest Paths, 244
SCCs of a Directed Graph, 246
Transitive Closure, 245

Amortized Analysis, 11, 100, 210
Array, 55
Articulation Points, 205, 256
Augmenting Path Algorithm, 258

Backtracking, 130, 135, 164, 196
Balanced Binary Search Tree, 84, 227
Bayer, Rudolf, 90
Bellman, Richard Ernest, 234, 247
Bellman-Ford Algorithm, 234

Bellman-Ford-Moore Algorithm, 236
Berge’s Lemma, 258, 263
Berge, Claude, 263
BFS, 202, 223
Biconnected, 205
Big Integer, 66
Binary Heap, 229
Binary Indexed Tree, 104
Binary Search, 57, 148
Binary Search the Answer, 108, 150
Binary Search Tree, 84
Bipartite Graph, 257

Check, 202
MCBM, 257

Bipartite Matching, see MCBM
Bisection Method, 149
Bitmask, 62, 182
Bitset, 57
Boole, George, 65
Bracket (Parenthesis) Matching, 71
Breadth First Search, see BFS
Bridges, 205, 256
Brute Force, see Complete Search
Bubble Sort, 56, 59
Bucket Sort, 56

C++11
auto, 42
lambda expression, 56
unordered map, 81
unordered set, 81

C++14
generic lambda expression, 56

C++17
structured binding, 195
tuple, 42

Case Analysis, 27
Chord Edge, 220
Cipher, 35
Codeforces, 21
Coin-Change, 155, 180
Collatz’s Conjecture, 146
Competitive Programming, 1

277



INDEX c� Steven, Felix, Suhendry

Complete Search, 130
Compression, 9, 141
Conjecture

Collatz’s, 146
Connected Components, 198
Counting Paths in DAG, 250
Counting Sort, 56, 60
Cryptography, 35
Cut Edge, see Bridges
Cut Vertex, see Articulation Points
Cycle

Cheapest Cycle, 245
Negative Cycle, 245

D&C, 59, 87, 148, 152
DAG

Counting Paths in, 250
General Graph to DAG, 251
Longest Paths, 249
Shortest Paths, 249

Data Compression, 141
Data Structures, 53
Degree of a Vertex, 261
Depth First Search, 195
Deque, 70, 224
Diameter

Graph, 246
Tree, 256

Dijkstra’s Algorithm, 227
Modified, 229
Original, 227

Dijkstra, Edsger Wybe, 73, 227, 233
Dilworth’s Theorem, 184, 188
Direct Addressing Table, 82
Directed Acyclic Graph, see DAG
Divide and Conquer, see D&C
DP, 164, 249
Dynamic Programming, see DP

Edge List, 95
Eulerian Graph, 260
Eulerian Path/Tour, 260

Fenwick Tree, 104
Fenwick, Peter M, 123
Fleury’s Algorithm, 261
Fleury, M., 266
Flood Fill, 199
Floyd, Robert W, 241, 247
Floyd-Warshall Algorithm, 241
Ford Jr, Lester Randolph, 234, 247

Forsyth-Edwards Notation (FEN), 36
Fractional Knapsack, 161

Graph, 193
Data Structure, 94
Diameter, 246
Girth, 245
Special, 96, 249
Transpose, 98

Graph Modeling, 199, 238
Greedy Algorithm, 155

Hash Table, 81
Heap, 78
Heap Sort, 56, 79
Held-Karp Algorithm, 183
Hierholzer’s Algorithm, 261
Hierholzer, Carl, 266
Hopcroft, John Edward, 194, 205
Hu↵man Code, 161

ICPC, 1
Implicit Graph, 97
In-degree, 261
Inclusion-Exclusion, 104, 175
Infix to Postfix Conversion, 72
Inorder Traversal, 86
Insertion Sort, 56
Interval Covering Problem, 157
Inverse Ackermann Function, 99
Inversion Index, 59
IOI, 1
IOI 2003 - Trail Maintenance, 222
IOI 2009 - Garage, 30
IOI 2009 - POI, 30
IOI 2010 - Cluedo, 29
IOI 2010 - Memory, 29
IOI 2010 - Quality of Living, 154
IOI 2011 - Crocodile, 240
IOI 2011 - Elephants, 162
IOI 2011 - Pigeons, 76
IOI 2011 - Race, 154
IOI 2011 - Tropical Garden, 214
IOI 2011 - Valley, 154

Jarńık, Vojtêch, 222
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Kattis - conservation *, 213
Kattis - continuousmedian *, 93
Kattis - control *, 122
Kattis - conundrum *, 39
Kattis - conversationlog *, 92
Kattis - convoy, 163
Kattis - cookieselection *, 93
Kattis - cookingwater, 146
Kattis - costumecontest, 92
Kattis - countingstars *, 212
Kattis - cowcrane, 30
Kattis - crackingrsa *, 146
Kattis - creditcard *, 38
Kattis - crosscountry, 240
Kattis - cudoviste *, 144
Kattis - cups, 75
Kattis - cycleseasy *, 189
Kattis - daceydice, 212
Kattis - dancerecital *, 145
Kattis - dasort, 162
Kattis - datum, 38
Kattis - deathstar *, 76
Kattis - deathtaxes, 30
Kattis - debugging, 189
Kattis - decisions, 265
Kattis - deduplicatingfiles, 92
Kattis - delimitersoup *, 77
Kattis - delivery *, 162
Kattis - detour, 240
Kattis - dicecup, 146
Kattis - di↵erent *, 28
Kattis - digicomp2, 213
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Kattis - digits *, 29
Kattis - dirtydriving, 75
Kattis - disastrousdoubling, 76
Kattis - disgruntledjudge, 146
Kattis - display *, 40
Kattis - divideby100 *, 74
Kattis - dobra *, 147
Kattis - doctorkattis *, 93
Kattis - dominoes2 *, 212
Kattis - dominos *, 214
Kattis - doubleplusgood, 145
Kattis - downtime *, 74
Kattis - draughts, 147
Kattis - dream, 77
Kattis - dreamer *, 145
Kattis - drinkingsong, 29
Kattis - drinkresponsibly *, 265
Kattis - driver, 163
Kattis - driversdilemma, 30
Kattis - drivinglanes, 189
Kattis - drivingrange, 222
Kattis - drmmessages, 39
Kattis - droppingdirections, 214
Kattis - drunkvigenere, 39
Kattis - dst, 38
Kattis - dungeon, 239
Kattis - dvds *, 163
Kattis - dyslectionary *, 75
Kattis - earlywinter, 29
Kattis - easiest *, 146
Kattis - easyascab, 213
Kattis - eenymeeny *, 147
Kattis - election2, 92
Kattis - elementarymath, 266
Kattis - elevatortrouble, 239
Kattis - eligibility *, 28
Kattis - empleh *, 36
Kattis - emptyingbaltic *, 240
Kattis - encodedmessage *, 39
Kattis - engineeringenglish, 92
Kattis - entertainmentbox, 163
Kattis - epigdanceo↵ *, 74
Kattis - equivalences *, 214
Kattis - erase, 74
Kattis - erdosnumbers, 239
Kattis - errands *, 189
Kattis - erraticants, 239
Kattis - escapeplan *, 266
Kattis - esej *, 92
Kattis - euclideantsp, 154

Kattis - eulerianpath *, 266
Kattis - eventplanning, 30
Kattis - evenup *, 77
Kattis - everywhere, 92
Kattis - exactchange2 *, 188
Kattis - exactlyelectrical, 30
Kattis - excavatorexpedition, 264
Kattis - excursion, 76
Kattis - expeditiouscubing, 154
Kattis - fairdivision, 162
Kattis - faktor, 28
Kattis - falcondive, 75
Kattis - falling *, 146
Kattis - fallingapart, 162
Kattis - falsesecurity, 39
Kattis - familydag, 213
Kattis - fantasydraft, 93
Kattis - fastfood *, 30
Kattis - faultyrobot *, 214
Kattis - fbiuniversal, 37
Kattis - fenwick *, 123
Kattis - ferryloading3, 77
Kattis - ferryloading4, 77
Kattis - fibtour *, 264
Kattis - filip *, 29
Kattis - financialplanning, 154
Kattis - fire2 *, 239
Kattis - fire3, 239
Kattis - firefly *, 153
Kattis - firestation, 240
Kattis - firetrucksarered, 222
Kattis - fishmongers, 162
Kattis - fizzbuzz *, 29
Kattis - flagquiz *, 75
Kattis - flexible *, 146
Kattis - flight *, 265
Kattis - flippingcards *, 266
Kattis - flippingpatties, 74
Kattis - floodit, 212
Kattis - floppy, 91
Kattis - flowerytrails *, 240
Kattis - flowshop *, 74
Kattis - flyingsafely, 122
Kattis - foldedmap, 187
Kattis - foldingacube, 212
Kattis - foolingaround *, 144
Kattis - foosball, 77
Kattis - forestfruits, 240
Kattis - forests, 122
Kattis - freckles, 222
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Kattis - freefood *, 91
Kattis - freeweights *, 154
Kattis - friday *, 38
Kattis - fridge, 162
Kattis - froggie *, 40
Kattis - froshweek, 76
Kattis - froshweek2 *, 162
Kattis - frozenrose, 265
Kattis - fruitbaskets *, 147
Kattis - fulldepthmorningshow, 265
Kattis - fulltank, 238, 240
Kattis - functionalfun *, 40
Kattis - funhouse *, 75
Kattis - gamenight, 76
Kattis - gamerank *, 36
Kattis - gcpc *, 93
Kattis - gearchanging, 75
Kattis - genealogical, 39
Kattis - generalizedrecursivefunctions, 76
Kattis - george, 240
Kattis - geppetto *, 145
Kattis - gerrymandering, 40
Kattis - getshorty, 240
Kattis - gettowork, 162
Kattis - glitchbot *, 40
Kattis - goblingardenguards, 145
Kattis - goingtoseed *, 154
Kattis - gold *, 212
Kattis - golombrulers *, 144
Kattis - goodmorning *, 147
Kattis - gopher2, 266
Kattis - gradecurving, 146
Kattis - grandopening, 266
Kattis - grandpabernie *, 92
Kattis - grapevine, 213
Kattis - grass, 157, 162
Kattis - grasshopper *, 239
Kattis - greedilyincreasing *, 74
Kattis - greetingcard *, 92
Kattis - grid *, 239
Kattis - growlinggears *, 146
Kattis - gruesomecave, 240
Kattis - guessinggame *, 36
Kattis - guessthedatastructure, 91
Kattis - hangingout *, 29
Kattis - hardware, 91
Kattis - hardwoodspecies, 93
Kattis - harshadnumbers, 146
Kattis - hauntedgraveyard *, 240
Kattis - haybales, 163

Kattis - haypoints, 92
Kattis - heartrate, 37
Kattis - height *, 75
Kattis - heirsdilemma, 146
Kattis - hello *, 28
Kattis - help, 162
Kattis - helpaphd *, 28
Kattis - helpfulcurrents, 264
Kattis - helpme *, 36
Kattis - hidingplaces *, 239
Kattis - hindex, 154
Kattis - hissingmicrophone *, 29
Kattis - hogwarts2, 214
Kattis - hoppers *, 213
Kattis - hopscotch50, 240
Kattis - horror *, 239
Kattis - horrorfilmnight, 163
Kattis - hotels, 248
Kattis - hothike, 29
Kattis - houselawn, 146
Kattis - howl, 30
Kattis - htoo, 154
Kattis - hypercube, 76
Kattis - iboard, 76
Kattis - icpcawards, 92
Kattis - icpcteamselection *, 162
Kattis - iforaneye, 92
Kattis - imageprocessing *, 74
Kattis - importspaghetti *, 248
Kattis - includescoring, 75
Kattis - increasingsubsequence *, 188
Kattis - inflation, 162
Kattis - integerlists *, 77
Kattis - intercept *, 213
Kattis - intergalacticbidding, 162
Kattis - interpreter, 40
Kattis - intervalcover, 162
Kattis - invasion *, 240
Kattis - inventing, 222
Kattis - inverteddeck, 74
Kattis - isahasa, 248
Kattis - isithalloween *, 28
Kattis - island, 212
Kattis - islandhopping *, 222
Kattis - islands *, 146
Kattis - islands3 *, 212
Kattis - iwannabe, 92
Kattis - janeeyre, 91
Kattis - jetpack, 214
Kattis - jewelrybox, 154
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Kattis - jobexpenses, 29
Kattis - joinstrings *, 77
Kattis - jollyjumpers *, 74
Kattis - judging, 75
Kattis - judgingmoose *, 28
Kattis - jugglingpatterns *, 91
Kattis - jurrasicjigsaw, 222
Kattis - justaminute *, 38
Kattis - justforsidekicks *, 123
Kattis - kafkaesque, 144
Kattis - karte, 36
Kattis - kastenlauf *, 248
Kattis - kattissquest *, 93
Kattis - kemija08, 39
Kattis - keyboardconcert, 189
Kattis - keypad, 75
Kattis - keytocrypto, 39
Kattis - keywords, 92
Kattis - kingofthewaves, 214
Kattis - kingpinescape, 213
Kattis - kitten, 265
Kattis - knapsack *, 188
Kattis - knightjump *, 239
Kattis - knigsoftheforest *, 91
Kattis - krizaljka, 40
Kattis - kutevi *, 189
Kattis - ladice *, 122
Kattis - landline, 222
Kattis - landlocked, 239
Kattis - lastfactorialdigit, 144
Kattis - lava, 239
Kattis - lawnmower, 75
Kattis - leftbeehind *, 28
Kattis - lektira *, 145
Kattis - licensetolaunch *, 29
Kattis - liga, 144
Kattis - lineup *, 29
Kattis - lipschitzconstant, 146
Kattis - logland, 163
Kattis - longincsubseq, 188
Kattis - longswaps, 75
Kattis - loopycabdrivers, 214
Kattis - loowater, 159, 162
Kattis - lost *, 239
Kattis - lostlineup *, 29
Kattis - lostmap *, 222
Kattis - luckynumber, 144
Kattis - luhnchecksum *, 37
Kattis - lumbercraft, 40
Kattis - magicalcows, 92

Kattis - magicsequence *, 76
Kattis - mali *, 76
Kattis - mallmania *, 239
Kattis - managingpackaging, 213
Kattis - mancala, 144
Kattis - manhattanmornings, 188
Kattis - marblestree *, 163
Kattis - marko, 92
Kattis - marswindow *, 38
Kattis - marypartitions, 264
Kattis - mastermind *, 74
Kattis - mathhomework, 144
Kattis - maximizingwinnings *, 265
Kattis - maximizingyourpay, 189
Kattis - mazemakers, 265
Kattis - measurement, 37
Kattis - medals, 145
Kattis - memorymatch *, 36
Kattis - messages, 162
Kattis - metaprogramming, 92
Kattis - mia *, 29
Kattis - milestones, 146
Kattis - millionairemadness *, 222
Kattis - minimumscalar *, 162
Kattis - ministryofmagic, 93
Kattis - minorsetback, 92
Kattis - minspantree *, 222
Kattis - mirror, 40
Kattis - misa, 145
Kattis - missinggnomes, 93
Kattis - missingnumbers, 30
Kattis - mjehuric *, 75
Kattis - molekule *, 213
Kattis - moneymatters, 212
Kattis - monk *, 154
Kattis - monopoly, 264
Kattis - more10, 122
Kattis - moscowdream *, 28
Kattis - mosquito, 29
Kattis - moviecollection *, 123
Kattis - mravi *, 264
Kattis - muddyhike *, 222
Kattis - multiplication, 40
Kattis - musicalchairs *, 147
Kattis - musicalnotation *, 40
Kattis - musicalscales, 37
Kattis - musicyourway *, 75
Kattis - muzicari, 188
Kattis - nastyhacks, 28
Kattis - natjecanje *, 147
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Kattis - natrij *, 38
Kattis - naturereserve *, 222
Kattis - nesteddolls *, 188
Kattis - nikola *, 189
Kattis - nineknights *, 74
Kattis - ninepacks, 188
Kattis - nodup, 92
Kattis - notamused, 93
Kattis - npuzzle *, 144
Kattis - numberfun, 28
Kattis - numbertree *, 91
Kattis - oceancurrents *, 239
Kattis - oddgnome *, 29
Kattis - oddities *, 28
Kattis - oddmanout, 92
Kattis - okvir, 40
Kattis - okviri, 40
Kattis - onaveragetheyrepurple, 239
Kattis - onechicken *, 28
Kattis - opensource, 93
Kattis - orders *, 188
Kattis - orphanbackups, 93
Kattis - outofsorts *, 153
Kattis - owlandfox, 146
Kattis - pachydermpeanutpacking *, 40
Kattis - pagelayout *, 147
Kattis - paintball, 266
Kattis - paintings *, 147
Kattis - pairingsocks *, 77
Kattis - palindromicpassword, 93
Kattis - parallelanalysis, 92
Kattis - parking, 37
Kattis - parking2, 146
Kattis - passingsecrets, 240
Kattis - patuljci, 144
Kattis - pearwise, 212
Kattis - peasoup *, 30
Kattis - peg, 144
Kattis - perket, 145
Kattis - permcode, 39
Kattis - permutationdescent, 189
Kattis - pervasiveheartmonitor *, 39
Kattis - pet *, 144
Kattis - physicalmusic, 74
Kattis - pianolessons, 266
Kattis - pickupsticks *, 213
Kattis - piglatin *, 39
Kattis - pikemaneasy, 162
Kattis - piperotation, 74
Kattis - pivot *, 74

Kattis - pizzahawaii, 92
Kattis - planetaris, 162
Kattis - planina, 28
Kattis - plantingtrees, 162
Kattis - playground, 163
Kattis - pokemongogo, 189
Kattis - pokerhand *, 29
Kattis - prerequisites, 30
Kattis - presidentialelections *, 188
Kattis - primaryarithmetic *, 76
Kattis - primematrix, 144
Kattis - primes, 147
Kattis - princesspeach *, 91
Kattis - prinova, 146
Kattis - printingcosts *, 40
Kattis - pripreme, 163
Kattis - problemclassification, 93
Kattis - promotions *, 214
Kattis - proofs, 92
Kattis - provincesandgold *, 28
Kattis - prozor *, 187
Kattis - prva, 75
Kattis - ptice, 29
Kattis - pubs, 213
Kattis - purplerain, 187
Kattis - putovanje, 144
Kattis - qaly *, 28
Kattis - qanat, 154
Kattis - quadrant *, 28
Kattis - quantumsuperposition, 265
Kattis - queens, 74
Kattis - quickbrownfox *, 91
Kattis - r2 *, 28
Kattis - race, 189
Kattis - raceday, 93
Kattis - raidteams, 93
Kattis - railroad, 122
Kattis - railroad2 *, 266
Kattis - rainfall2, 154
Kattis - rationalsequence2, 91
Kattis - rationalsequence3, 91
Kattis - reachableroads *, 212
Kattis - recenice, 92
Kattis - recipes, 37
Kattis - reconnaissance, 154
Kattis - recount *, 92
Kattis - redbluetree, 222
Kattis - redistribution, 162
Kattis - reduction, 144
Kattis - register, 144
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Kattis - relocation, 91
Kattis - repeatingdecimal, 146
Kattis - restaurant *, 77
Kattis - retribution, 75
Kattis - reversebinary, 77
Kattis - reverserot, 39
Kattis - reversingroads, 214
Kattis - rimski *, 39
Kattis - rings2 *, 75
Kattis - robotopia, 146
Kattis - robotsonagrid *, 264
Kattis - rockband, 74
Kattis - rockpaperscissors *, 37
Kattis - rockscissorspaper, 37
Kattis - rollcall, 92
Kattis - romanholidays *, 39
Kattis - romans, 28
Kattis - roompainting *, 153
Kattis - runlengthencodingrun, 39
Kattis - runningmom *, 213
Kattis - runningsteps *, 264
Kattis - sabor, 40
Kattis - safehouses, 144
Kattis - safepassage *, 264
Kattis - savingdaylight *, 38
Kattis - savingforretirement, 146
Kattis - savinguniverse, 264
Kattis - saxophone, 38
Kattis - scenes *, 264
Kattis - score, 37
Kattis - secretchamber *, 248
Kattis - secretmessage *, 39
Kattis - securedoors, 92
Kattis - securitybadge, 212
Kattis - sellingspatulas *, 187
Kattis - semafori, 38
Kattis - server, 77
Kattis - set *, 144
Kattis - sevenwonders, 29
Kattis - sgcoin *, 144
Kattis - shatteredcake, 30
Kattis - shiritori *, 92
Kattis - shopaholic *, 162
Kattis - shoppingmalls, 240
Kattis - shortestpath1 *, 240
Kattis - shortestpath2 *, 240
Kattis - shortestpath3 *, 240
Kattis - shortestpath4, 265
Kattis - shortsell, 187
Kattis - showroom, 239

Kattis - shu✏ing *, 36
Kattis - sidewayssorting *, 75
Kattis - silueta, 214
Kattis - sim *, 77
Kattis - simpleaddition *, 76
Kattis - simplicity, 163
Kattis - simplification, 163
Kattis - sixdegrees, 239
Kattis - skener *, 40
Kattis - skocimis, 163
Kattis - slalom2, 154
Kattis - slikar, 239
Kattis - slowleak, 248
Kattis - smallschedule, 154
Kattis - snappereasy *, 76
Kattis - snapperhard *, 76
Kattis - snowflakes, 92
Kattis - socialrunning, 146
Kattis - sodaslurper, 146
Kattis - sok, 30
Kattis - solitaire, 147
Kattis - somesum, 146
Kattis - sort, 76
Kattis - sortofsorting *, 75
Kattis - spavanac, 38
Kattis - speed, 154
Kattis - speedlimit, 29
Kattis - spider, 222
Kattis - spiderman *, 189
Kattis - spiral, 239
Kattis - squaredeal *, 145
Kattis - squarepegs *, 162
Kattis - srednji *, 93
Kattis - sretan, 154
Kattis - standings, 162
Kattis - stararrangements, 29
Kattis - statistics *, 29
Kattis - stockbroker *, 163
Kattis - stockprices *, 91
Kattis - stopcounting, 146
Kattis - studentsko, 188
Kattis - subway2, 240
Kattis - succession *, 214
Kattis - summertrip, 144
Kattis - sumoftheothers, 146
Kattis - supercomputer *, 123
Kattis - superdoku, 266
Kattis - suspensionbridges *, 154
Kattis - svada, 154
Kattis - svemir, 222
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Kattis - swaptosort, 122
Kattis - sylvester, 154
Kattis - symmetricorder, 77
Kattis - synchronizinglists, 153
Kattis - t9spelling *, 39
Kattis - tajna *, 39
Kattis - tarifa *, 28
Kattis - tautology *, 145
Kattis - taxing, 154
Kattis - teacherevaluation, 163
Kattis - telephones, 144
Kattis - temperature *, 28
Kattis - tenis, 38
Kattis - teque *, 77
Kattis - terraces *, 212
Kattis - test2, 214
Kattis - tetris, 75
Kattis - texassummers *, 240
Kattis - textmessaging, 162
Kattis - tgif, 38
Kattis - thanos, 29
Kattis - thanosthehero *, 146
Kattis - thegrandadventure, 77
Kattis - thelastproblem *, 28
Kattis - thisaintyourgrandpascheckerboard, 74
Kattis - threepowers, 76
Kattis - throwns *, 77
Kattis - ticketpricing *, 189
Kattis - tictactoe2 *, 37
Kattis - tide, 240
Kattis - tight *, 189
Kattis - tildes, 122
Kattis - timebomb *, 39
Kattis - timeloop *, 28
Kattis - timezones *, 38
Kattis - toilet *, 37
Kattis - torn2pieces *, 213
Kattis - touchdown, 40
Kattis - touchscreenkeyboard *, 38
Kattis - tourdefrance, 144
Kattis - tourists *, 265
Kattis - towering, 145
Kattis - toys *, 147
Kattis - tra�c, 74
Kattis - trainpassengers *, 37
Kattis - trainsorting *, 188
Kattis - transitwoes, 37
Kattis - transportationplanning *, 248
Kattis - traveltheskies *, 122
Kattis - treasurehunt, 29

Kattis - treehouses, 222
Kattis - trendingtopic, 77
Kattis - tri, 146
Kattis - trick, 146
Kattis - tricktreat, 154
Kattis - trik, 36
Kattis - trip2007, 162
Kattis - tripletexting, 39
Kattis - trollhunt *, 146
Kattis - turbo, 123
Kattis - turtlemaster *, 37
Kattis - tutorial *, 12
Kattis - ultraquicksort, 76
Kattis - unionfind *, 122
Kattis - upsanddownsofinvesting, 74
Kattis - variablearithmetic, 92
Kattis - veci *, 145
Kattis - vegetables *, 163
Kattis - victorythroughsynergy, 145
Kattis - videospeedup *, 146
Kattis - vindiagrams, 212
Kattis - virtualfriends, 122
Kattis - virus *, 163
Kattis - visualgo *, 240
Kattis - volim, 29
Kattis - vote *, 30
Kattis - walls *, 146
Kattis - walrusweights *, 189
Kattis - warehouse, 93
Kattis - watersheds, 189
Kattis - weakvertices, 122
Kattis - weightofwords, 189
Kattis - wertyu *, 37
Kattis - wettiles, 239
Kattis - w↵nproof, 162
Kattis - whatdoesthefoxsay, 92
Kattis - wheresmyinternet *, 212
Kattis - whostheboss, 265
Kattis - windows *, 40
Kattis - wine, 240
Kattis - wizardofodds *, 76
Kattis - woodcutting, 162
Kattis - wordcloud *, 37
Kattis - wordclouds, 189
Kattis - wordspin, 163
Kattis - workout *, 38
Kattis - workstations *, 163
Kattis - worstweather, 123
Kattis - xyzzy *, 240
Kattis - yinyangstones, 29
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Kattis - zagrade *, 145
Kattis - zamka, 146
Kattis - zanzibar, 29
Kattis - zebrasocelots, 76
Kattis - zipfsong, 75
Kattis - zipline, 154
Kattis - zoning, 239
Kattis - zoo, 93
Kirchho↵’s Matrix Tree Theorem, 215
Knapsack, 179

Fractional, 161
Knight Moves, 226
Knight’s Tour, 226
Knuth’s Optimization, 186
Kosaraju’s Algorithm, 208
Kosaraju, Sambasiva Rao, 194, 208
Kruskal’s Algorithm, 215
Kruskal, Joseph Bernard, 215, 222
Kuratowski’s Theorem, 263

Landis, Evgenii Mikhailovich, 90
Lazy

Deletion, 230
Propagation, 117

Lemma
Berge’s, 258, 263

Libraries, 53
Linked List, 69
Live Archive, 21
Longest Increasing Subsequence, 176
Longest Paths on DAG, 249
Lowest Common Ancestor, 257

Matching
Bracket (Parenthesis), 71
Graph, 257

Max 1D Range Sum, 173
Max 2D Range Sum, 174
MCBM, 257
Memoization, 167
Merge Sort, 56, 59
Min Spanning Tree, 215

‘Maximum’ Spanning Tree, 218
‘Minimum’ Spanning Subgraph, 219
Minimum ‘Spanning Forest’, 219
Second Best Spanning Tree, 220

MiniMax and MaxiMin, 219, 245
Monotone, 149
Moore, Edward Forrest, 214
Multiset, 13, 141

N-Queens Problem, 135
Negative Cycle, 234, 236, 245
NP-hard/complete, 249

Coin-Change, 180
Knapsack, 179
Subset-Sum, 179
Traveling-Salesman-Problem, 182

O✏ine Queries, 148
O↵set, 107
Order Statistics, 85, 87
Out-degree, 261

Parenthesis, 71
Path Compression, 100
Patience Sorting, 178
PERT, 250
Pigeonhole Principle, 156
Point Query, 108
Point Update, 108, 116
Policy-Based Data Structures, 90
Postfix Calculator, 72
Prüfer sequence, 122
Prefix Sum, 104, 174
Prim’s Algorithm, 217
Prim, Robert Clay, 217, 222
Priority Queue, 79, 201, 217, 229
Pseudoforest, 263
Pseudotree, 255, 263
Python

Big (Unlimited Precision) Integer, 66

Quadrangle Inequality, 186
Queue, 69, 197, 201, 202, 223, 236
Quick Select, 87
Quick Sort, 56

Radix Sort, 56, 61
Randomized Algorithm, 88
Range Minimum Query, 114
Range Query, 108, 109, 115
Range Sum

Max 1D Range Sum, 173
Max 2D Range Sum, 174

Range Update, 108, 109, 117
Ranking Problem, 87
Reachability, 196, 198
Recursive Backtracking, see Backtracking
Reduction, 9, 157
Roman Numerals, 34

SCC, 208, 246
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Searching, 57
Second Best Spanning Tree, 220
Segment Tree, 114
Selection Problem, 87
Selection Sort, 56
Shunting-yard Algorithm, 73
Single-Source Shortest Paths, see SSSP
Sliding Window, 70
Sort

Bubble Sort, 59
Counting Sort, 60
Merge Sort, 59
Radix Sort, 61

Sorting, 56, 79
Special Graphs, 249
SPFA, 236
SPOJ FISHER - Fishmonger, 265
SSSP, 256

Negative Cycle, 234, 236
Unweighted, 223
Weighted, 227

Stack, 69, 71, 72
Strongly Connected Components, see SCC
Subsequence, 176
Subset-Sum, 179
Sweep Line, 158

Tarjan’s Algorithm, 209
Tarjan, Robert Endre, 194, 205, 208
Ternary Search, 152
Theorem

Dilworth’s, 184, 188
Kirchho↵’s Matrix Tree, 215
Kuratowski’s, 263

Thinking Backwards, 9, 140
Time Complexity, 12
Topcoder, 21
Topcoder Open 2009: Prime Pairs, 266
Topological Sort, 200
Transitive Closure, 245
Traveling-Salesman-Problem, 182
Treap, 127
Tree, 255

APSP, 256
Articulation Points and Bridges, 256
Diameter of, 256
SSSP, 256
Tree Traversal, 255

TSP, 182

Union-Find Disjoint Sets, 99

USACO, 21
UVa, 21
UVa 00100 - The 3n + 1 problem, 146
UVa 00101 - The Blocks Problem, 75
UVa 00102 - Ecological Bin Packing, 146
UVa 00103 - Stacking Boxes, 264
UVa 00104 - Arbitrage, 248
UVa 00105 - The Skyline Problem, 144
UVa 00108 - Maximum Sum, 174, 187
UVa 00110 - Meta-loopless sort, 40
UVa 00111 - History Grading, 188
UVa 00112 - Tree Summing, 265
UVa 00114 - Simulation Wizardry, 37
UVa 00115 - Climbing Trees, 265
UVa 00116 - Unidirectional TSP, 189
UVa 00117 - The Postal Worker ..., 266
UVa 00118 - Mutant Flatworld Explorers, 214
UVa 00119 - Greedy Gift Givers, 30
UVa 00122 - Trees on the level, 265
UVa 00123 - Searching Quickly, 75
UVa 00124 - Following Orders, 213
UVa 00125 - Numbering Paths, 248
UVa 00127 - “Accordian” Patience, 77
UVa 00129 - Krypton Factor, 147
UVa 00130 - Roman Roulette, 147
UVa 00133 - The Dole Queue, 147
UVa 00139 - Telephone Tangles, 38
UVa 00140 - Bandwidth, 145
UVa 00141 - The Spot Game, 37
UVa 00144 - Student Grants, 40
UVa 00145 - Gondwanaland Telecom, 38
UVa 00146 - ID Codes, 145
UVa 00147 - Dollars, 188
UVa 00150 - Double Time, 38
UVa 00151 - Power Crisis *, 147
UVa 00154 - Recycling, 144
UVa 00157 - Route Finding, 240
UVa 00158 - Calendar, 38
UVa 00161 - Tra�c Lights *, 37
UVa 00162 - Beggar My Neighbour, 36
UVa 00165 - Stamps *, 144
UVa 00166 - Making Change, 188
UVa 00167 - The Sultan Successor, 144
UVa 00168 - Theseus and the ..., 214
UVa 00170 - Clock Patience, 38
UVa 00173 - Network Wars, 214
UVa 00183 - Bit Maps *, 154
UVa 00185 - Roman Numerals *, 39
UVa 00186 - Trip Routing, 248
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